

A Northeast Utilities Company

February 27, 2014

D32795

Mr. Craig Wright, Acting Director Air Resources Division NH Dept. of Environmental Services 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095 RECEIVED W WHAMPSHIRE

FEB 27 2014

AIR HEJOURCES DIVISION

PSNH Energy Park 780 North Commercial Street, Manchester, NH 03101

Public Service Company of New Hampshire P.O. Box 330 Manchester, NH 03105-0330 (603) 634-2851 william.smagula@nu.com

William H. Smagula, P.E. Vice President - Generation

Re:

Public Service Company of New Hampshire Schiller Station – Temporary Permit Application for Installation of Dry Sorbent and Activated Carbon Injection Emission Control Technology

Dear Mr. Wright:

Public Service Company of New Hampshire (PSNH) submits the enclosed temporary permit application for the installation of dry sorbent (DSI) and activated carbon injection (ACI) emission control technologies on Schiller Station Units SR4 and SR6. The installation of the DSI/ACI systems will be used in conjunction with existing control technologies to meet the requirements of 40 CFR 63, Subpart UUUUU, and National Emission Standards for Hazardous Air Pollutant: Coal and Oil Fired Electric Utility Steam Generating Units (Mercury and Air Toxics Standard-MATS). The proposed DSI and ACI systems are intended to reduce the emissions of acid gases (hydrogen chloride and hydrogen fluoride) and mercury, and are anticipated to also reduce emissions of sulfur dioxide and sulfuric acid mist.

The DSI/ACI system installation project is a multi-year, multi-component project with start-up and commissioning of the new system expected to occur during the first quarter of 2016. The new DSI/ACI system involves the construction and installation of a carbon bulk bag unloading system, a dry sorbent storage silo, sorbent feed equipment, and injection lances located in the ductwork of Units SR4 and SR6 to supply sorbent and activated carbon directly into the flue gas stream. Conceptual drawings for both injection systems are attached.

The preliminary project schedule includes the following project milestones and anticipated target dates.

Project Milestones

Solicitation of Bids for Owners Engineer
Award of Owners Engineer Contract
Development of DSI/ACI System Specification
Solicitation of Bids for DSI/ACI System
Award of DSI/ACI System Contract
Preliminary System Engineering
Development of System Installation Specification
Solicitation of Bids for System Installation
Award of System Install Contract
Completion of Construction
Start-up, Commissioning and Performance Testing

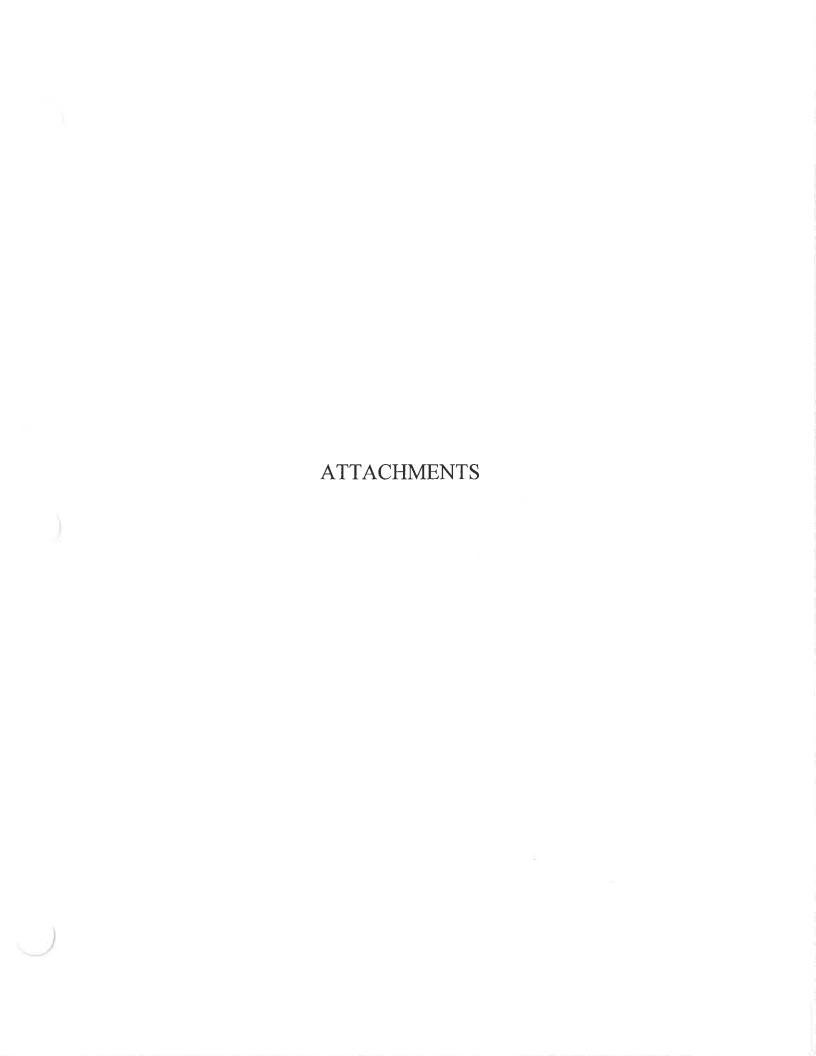
January-February 2014
March 2014
March – May 2014
May - June 2014
June 2014
June – November 2014
August – November 2014
December – January 2015

Anticipated Target Dates

January 2015 December 2015 January – April 2016 Mr. Craig Wright February 27, 2014 Page 2 of 2

I expect that a more defined schedule will be developed by mid-2014 once the system contract is awarded. Updates to the schedule will be provided to DES as necessary during the completion of the DSI/ACI system.

If you have any questions regarding the enclosed application, please contact Sheila Burke of my staff at 603-634-2512.


Very truly yours,

PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE

William H. Smagula, P.E.

Vice President – PSNH Generation

Att.

FILE REFERENCE NOTATION

Confidential Business Information received on 2/27/14 with application # 14-0081. PSNH – Schiller Station AFS # 3301500012. Filed in VII. A. Confidential Business Information.

FILE REFERENCE NOTATION

Confidential Business Information received on 2/27/14 with application # 14-0081. PSNH – Schiller Station AFS # 3301500012. Filed in VII. A. Confidential Business Information.

AIR PERMIT APPLICATION FOR DRY SORBENT AND ACTIVATED CARBON INJECTION UNITS SR4 AND SR6

SCHILLER STATION PORTSMOUTH, NEW HAMPSHIRE

PREPARED FOR:

Public Service Company of New Hampshire Manchester, New Hampshire

PREPARED BY:

GZA GeoEnvironmental, Inc. Manchester, New Hampshire

February 2014 File No. 04.0029995.00

Copyright © 2014 GZA GeoEnvironmental, Inc.

TABLE OF CONTENTS

		Page
1.0 INTRODUCTI	ON	1
1.1 PROJECT D	ESCRIPTION	1
	t Injection Control	1 1
	t Storage and Delivery Units ry Equipment	2
	ON OF SCHILLER SR4 AND SR6	2
2.0 EMISSIONS D	ATA	2
2.1 BOILER EM	ISSIONS	2
3.0 APPLICABLE	REQUIREMENTS	2
	NMENT NEW SOURCE REVIEW AND PREVENTION OF NT DETERIORATION	2
	UBPART DA – STANDARDS OF PERFORMANCE FOR UTILITY STEAM GENERATING UNITS	4
HAZARDO	UBPART UUUUU – NATIONAL EMISSIONS STANDARDS FOR US AIR POLLUTANTS: COAL- AND OIL-FIRED ELECTRIC TEAM GENERATING UNITS	4
3.4 CHAPTER E		5
3.5 CHAPTER E	NV-A 1300	5
3.6 CHAPTER E	NV-A 1400	6
3.7 CHAPTER E	NV-A 1600	6
3.8 CHAPTER E	NV-A 2000	6
TABLE		
TABLE 1	CRITERIA POLLUTANT INVENTORY	
TABLE 2	ESTIMATED EMISSIONS FROM VARIOUS FUELS	
TABLE 3	SELECT ESTIMATED EMISSIONS FROM COAL COMBUSTION	1
TABLE 4	SUMMARY OF HAZARDOUS AIR POLLUTANT EMISSIONS	
TABLE 5	MAJOR MODIFICATION APPLICABILITY EVALUATION FOR AND PSD	NSR
APPENDICES		
APPENDIX A	APPLICATION FORMS	
APPENDIX B	HISTORICAL EMISSIONS DATA AND SUPPORTING CALCULATIONS AND DOCUMENTATION	
APPENDIX C	ENV-A 1400 COMPLIANCE DEMONSTRATION	
APPENDIX D	PROOF OF GOOD STANDING	

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION

Public Service Company of New Hampshire (PSNH) Schiller Station (Schiller) is a wood and fossil fuel-fired electric generating station. Schiller Units 4 (SR4) and 6 (SR6) consist of two fossil fuel-fired electric utility steam generating units permitted to combust coal and oil, with biomass co-firing capacity of up to 10 percent (%) by weight of coal input. The facility also includes one wood and fossil fuel-fired boiler (SR5), a combustion turbine (SRCT), emergency generator, a primary and secondary coal crusher, coal and wood handling systems and various insignificant and exempt activities.

PSNH is proposing to install Dry Sorbent Injection (DSI) and Activated Carbon Injection (ACI) systems on SR4 & SR6 for the purposes of complying with the emissions limitations established under 40 CFR Part 63, Subpart UUUUU, National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units. DSI/ACI systems are used to control a variety of air emissions such as hydrochloric acid (HCI), mercury, and sulfur dioxide (SO₂) from the flue gas stream. PSNH is proposing to configure the DSI/ACI systems to be compatible with various sorbents including trona (trisodium hydrogendicarbonate dehydrate), sodium bicarbonate and activated carbon. These sorbents will be injected into the flue gas stream through strategically located ports upstream of the electrostatic precipitator (ESP). These sorbents are formulated to react with and/or adsorb constituents from the flue gas, the reaction products and sorbents are then removed downstream by the ESP. Application forms (Form ARD-1 and two Form ARD-2s) are provided in **Appendix A**. Proof of good standing is provided in **Appendix D**.

The sorbent injection systems are self-contained and designed for maximum operational flexibility, accuracy and consist of three major components (sorbent injection control units, sorbent storage units and ancillary equipment).

1.1.1 Sorbent Injection Control

The injection control units are used to control the overall processes and are designed to inject sorbent material into the flue gas stream. The sorbents will enter the flue gas stream through strategically located lances. The systems will be configured to achieve optimum reduction of mercury and acid gas emissions from the coal combustion process. Activated carbon will be used for mercury control, while sodium bicarbonate and trona will be utilized for acid gas control. Safety data sheet information for each proposed sorbent material is provided in **Appendix B**.

1.1.2 Sorbent Storage and Delivery Units

The storage and delivery units serve as the local final storage and feed system for the sorbent injection systems and serve as the metering platform to deliver sorbents to the flue gas. A storage unit consisting of a vertical silo will be used store sodium bicarbonate and/or trona. Activated carbon will be received in bulk storage bags, which will be used to directly supply the ACI systems.

1.1.3 Ancillary Equipment

Ancillary equipment includes the remaining equipment needed to operate the systems, including hoses and manifolds needed to convey the various sorbent materials to the injection ports.

1.2 DESCRIPTION OF SCHILLER SR4 AND SR6

Schiller SR4 and SR6 are front-wall fired, dry bottom, pulverized coal steam electric boilers, each capable of providing 50 megawatts gross electrical output. These units are also capable of firing oil and co-firing biomass with coal. Each unit has a heat input rating of 574 million British thermal units per hour (MMBTU/hr) when firing coal, which corresponds to a maximum fuel consumption rate of 22.51 tons per hour at 12,750 British thermal units per pound (BTU/lb). Each unit is equipped with electrostatic precipitators (ESPs) for particulate matter (PM) control and selective non-catalytic reduction (SNCR), overfire air systems, and low-NO_X burners to control oxides of nitrogen (NO_X). Each boiler is equipped with a continuous emissions monitoring system (CEMS) to monitor gas flow rate, opacity, carbon dioxide (CO₂), sulfur dioxide (SO₂), and NO_X. Each boiler is also equipped with continuous carbon monoxide (CO) monitoring; however these units are not currently maintained for compliance purposes as CEMS.

2.0 EMISSIONS DATA

2.1 BOILER EMISSIONS

It is not anticipated that the installation of the DSI/ACI system will have a material effect on combustion conditions, ash handling, or the operation of the air pollution control equipment in SR4 and SR6. The proposed DSI/ACI installation will result in reduced emissions of acid mist, acid gases (HCL and hydrogen fluoride), mercury, and SO₂ from SR4 and SR6. Although the proposed dry sorbent materials that will be injected into the flue gas stream represent additional particulate matter loading to the ESPs, research and development trials conducted in August of 2012 and August of 2013 indicate that the sorbents are readily removed by the ESPs, and no increase in PM emissions is anticipated to occur. A summary of the emissions data generated during the R&D trial runs is included in **Appendix B**.

Hourly and annual emissions data for SR4 and SR6 are presented in **Tables 1** and **2**, and estimated Hazardous Air Pollutant (HAP) emission summaries for SR4 and SR6 are presented in **Tables 3** and **4**.

3.0 APPLICABLE REQUIREMENTS

The applicability of various State and federal regulations are discussed below.

3.1 NON-ATTAINMENT NEW SOURCE REVIEW AND PREVENTION OF SIGNIFICANT DETERIORATION

Schiller Station is a major source of SO₂, NO_X, PM, CO, CO₂, VOC and HAP. Schiller is located in Rockingham County which is listed as attainment/unclassifiable for ozone. However, the

entire State of New Hampshire is part of the Northeast Ozone Transport Region, and the NOX/VOC significance thresholds applicable to moderate ozone non-attainment areas apply. Therefore, if a net emissions increase of NO_X and/or VOC from the proposed installation to SR4 and SR6, including any contemporaneous increases and decreases, exceeds the significance level of 40 tons per year for either pollutant, then non-attainment new source review (NSR) applies.

The facility is located in areas classified as attainment/unclassifiable for CO, NO₂, PM₁₀, PM_{2.5}, lead, and SO₂. The facility is a major source of one or more attainment pollutants, and, therefore, a significant net emissions increase of an attainment pollutant is subject to the Prevention of Significant Deterioration (PSD) permitting requirements for that particular pollutant.

A physical change or change in the method of operation that results in a significant net emissions increase of an attainment or non-attainment pollutant would be subject to PSD and non-attainment NSR permitting requirements, respectively. For an electric utility steam generating unit (ESGU), the evaluation of the net emissions increases is based on the projected representative actual annual emissions for a two-year period after a physical change or change in the method of operation, considering the effect that the change has on increasing or decreasing the hourly emissions rate and on the projected capacity utilization of the unit. Changes in capacity utilization that are unrelated to the particular change in the unit are excluded for the purposes of determining the representative actual annual emissions (40 CFR 52.21(33), July 1, 1993).

A significant net increase is determined by comparing the representative actual annual emissions (actual emissions) prior to the change to the projected future actual emissions expected to occur after the change (actual-to-actual test). If this test demonstrates that any emissions increases resulting from the change are less than the significance levels established in the NSR rules, NSR does not apply. The actual-to-actual test is generally preferred because it allows emissions increases that result from demand growth to be excluded from the demonstration provided that the unit could accommodate such growth prior to the change. This demand growth exclusion is particularly important for ESGUs since very small fluctuations in demand (<1%) can result in pollutant increases that would otherwise trigger NSR.

No significant net increases in emissions are expected to occur as a result of the proposed DSI system installation. In addition, the DSI system will not affect the capacity utilization or increase the dispatch status of SR4 and SR6 with the Independent System Operator. Therefore, there will not be a significant net increase in representative actual annual emissions as a result of the proposed change, and PSD and NSR permitting requirements will not apply.

Actual emissions for an ESGU are defined as the average rate, in tons-per-year, at which the unit actually emitted the pollutant during a two-year period which precedes the proposed change and which is representative of normal source operation. Projected actual emissions are the projected annual emissions from each modified unit for the two-year period after the proposed change (or another two-year period that is more representative of normal operation of the modified unit).

Based on an evaluation of utilization over the most recent five year period, calendar years 2009 and 2010 were selected as most representative of normal operation for SR4 and SR6. Emissions data for calendar years 2009 through 2013 are provided in **Appendix B**, along with pertinent sample calculations and supporting documentation.

The non-attainment NSR and PSD applicability analysis for the proposed DSI system is presented in **Table 5**. Based on the information presented in **Table 5**, the proposed installation to SR4 and SR6 are not subject to PSD or non-attainment NSR permitting requirements.

3.2 40 CFR 60 SUBPART DA – STANDARDS OF PERFORMANCE FOR ELECTRIC UTILITY STEAM GENERATING UNITS

Schiller SR4 and SR6 are electric utility steam generating units for the purposes of New Source Performance Standards at 40 CFR 60. Although they were installed prior to the applicability date, any change at these units that would be considered a modification under 40 CFR 60, namely an increase in the maximum hourly emission rate of a pollutant regulated under the particular subpart, would be considered a modification, subjecting these units to the requirements of 40 CFR 60 Subpart Da. However, the proposed changes will not increase the maximum hourly emission rate of any pollutants regulated under Subpart Da. It is not anticipated that an annual or hourly emission increase will result from this proposed change. 40 CFR 60, Subpart Da applies to each electric utility steam generating unit that commences construction, reconstruction or modification after 1978, and has a heat input greater 250 MMBtu. Unit 4 was constructed in 1952 and has a heat input capacity of 574 MMBtu/hr. Unit 6 was constructed in 1957 and also has a heat input capacity of 574 MMBtu/hr.

Under 40 CFR 60, modification means "any physical changing in, or change in the method of operation of, an existing facility which increases the amount of any air pollutant (to which a standards applies" emitted into the atmosphere by that facility or which results in the emission of any air pollutant (to which a standard applies) into the atmosphere not previously emitted." A physical or operation change to an existing facility which results in an increase in the emission rate (lb/hr) to the atmosphere of any pollutant to which a standard applies is considered a modification. Subpart Da establishes standards for NOx, SO₂, and TSP. The proposed changes to SR4 and SR6 will not result in an increase in the potential hourly emission rate of any regulated pollutants under Subpart Da; therefore, the proposed changes do not constitute a modification under 40 CFR 60 NSPS.

Reconstruction means "the replacement of components of an existing facility to such an extent that (1) the fixed capital cost of the new components exceeds 50 percent of the fixed capital cost that would be required to construct a comparable entirely new facility, and (2) It is technologically and economically feasible to meet the applicable standards." The proposed installation of the DSI systems for SR4 and SR6 are well below this threshold and, therefore, the proposed changes do not constitute reconstruction under 40 CFR 60.

3.3 40 CFR 63 SUBPART UUUUU – NATIONAL EMISSIONS STANDARDS FOR HAZARDOUS AIR POLLUTANTS: COAL- AND OIL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS

Schiller Station is a major source of HAPs. Three coal- and/or oil-fired ESGUs are in operation at the Site (i.e., Units SR4, SR5, and SR6). Unit SR5 currently combusts biomass fuel, with the permitted capacity to combust coal. SR5 operates under a case-by-case MACT determination under 40 CFR 63, Subpart B. Units SR4 and SR6 are subject to the emission standards for coal-fired ESGUs under Subpart UUUUU. Each unit was designed to combust virgin coal with a heat content of greater than 8,300 BTU per pound. Therefore, the standards applicable to coal-fired units in the "not low-rank coal" category listed in Table 2 of Subpart UUUUU apply to SR4 and SR6.

PSNH intends to comply with the following emissions limits under the rule:

Filterable PM – 0.03 lb/MMBTU, 30-day average HCl – 0.002 lb/MMBTU, 30-day average Mercury – 1.2 lb/trillion BTU, 30-day average

In addition to the emissions limitations outlined above, PSNH is also subject to the following provisions of Subpart UUUUU:

- Work practice standards including periodic burner and combustion control tune ups and startup and shutdown requirements.
- Operating limits.
- Performance testing.
- Demonstrating continuous compliance.
- Notification, recordkeeping and reporting, including semi-annual compliance reporting.

PSNH is currently in the process of evaluating and selecting alternatives for performance testing and continuous compliance monitoring under Subpart UUUUU. PSNH anticipates that final alternatives will be selected as part of the system design and procurement process. PSNH will provide updated compliance documentation to NHDES once available.

The compliance date for existing EGUs under Subpart UUUUU is April 16, 2015. In accordance with the provisions of 40 CFR 63.6(i), PSNH has requested and been granted a one-year extension until April 16, 2016. Various notifications are required under Subpart UUUUU and will be submitted in accordance with the schedules established in the rule.

3.4 CHAPTER ENV-A 600

Chapter Env-A 600 requires that a permit be obtained for certain air pollution sources. This includes the proposed installation. Env-A 606, Air Pollution Dispersion Modeling Impact Analysis, requires that a complete modeling impact analysis be performed as part of an application for a permit. Criteria pollutant emissions are not anticipated to increase due to the proposed installation and therefore, modeling will not be required. The trona sorbent material contains crystalline silica as an impurity. Crystalline silica is a regulated toxic air pollutant under Env-A 1400. Air quality dispersion modeling was previously prepared and submitted to NHDES in support of the DSI research and development trails. A revised and updated Env-A 1400 compliance evaluation based on the installation of DSI systems on SR4 and SR6 has been included with this application as **Appendix C**. Env-A 618 requires that major modifications to existing sources demonstrate that net emissions increases are not significant. Env-A 619 requires that major modifications comply with PSD requirements of 40 CFR 52.21. A discussion of NSR and PSD applicability is presented in **Section 3.1** above, and **Table 5** presents a comparison of the net emissions increases with the significant emission values defined in Env-A 618.02(b)(11) and 40 CFR 52.21.

3.5 CHAPTER ENV-A 1300

Chapter Env-A 1300 contains Reasonably Available Control Technology (RACT) NO_X emission limits for various combustion devices at facilities with potential annual NO_X emissions of 50 tons or greater. Schiller Station exceeds this threshold and, therefore, the proposed installation is subject to NO_X RACT. Under Env-A 1300, SR4 and SR6 are utility boilers with a heat input rating greater than 50 MMBTU/hr firing coal, coal/biomass and/or No. 6 oil. Therefore, the

boilers are subject to Env-A 1303.06(b), which requires a 24-hour average emissions limit of 0.50 lb/MMBTU when firing coal or any combination of coal and oil. The boilers are equipped with overfire air and SNCR systems, and the NO_X emissions levels of the modified boilers will also comply with the applicable limit when firing coal or any combination of coal, biomass and oil.

3.6 CHAPTER ENV-A 1400

The proposed installation and operation of the proposed SR4 and SR6 DSI systems is anticipated to result in emissions of Env-A 1400 regulated toxic air pollutants due to the presence of crystalline silica as an impurity in one of the proposed sorbents (trona). An Env-A 1400 air toxics compliance demonstration has been prepared for SR4 and SR6 and is provided as **Appendix C** to document that installation and operation of the proposed DSI systems will not result in exceedances of the applicable Env-A 1400 ambient air limits (AALs).

3.7 CHAPTER ENV-A 1600

Chapter Env-A 1600 contains fuel specifications for combustion sources, including sulfur limitations for solid, liquid, and gaseous fuels. Coal and fuel oil are listed fuels, and, therefore, the modification is subject to Env-A 1600. The existing fuel sulfur limitations for SR4 and SR6 are equal to or lower than the limits established in Env-A 1600.

3.8 CHAPTER ENV-A 2000

Chapter Env-A 2000 contains general requirements and standards for fuel burning devices. In accordance with Env-A 2002.01, opacity is limited to 40% for any continuous 6-minute period in any 60-minute period for any fuel burning device installed prior to May 13, 1970.

In accordance with Env-A 2002.06(c)(2), particulate matter emissions from the proposed DSI installation are limited to 0.31 lb/MMBTU. Each unit is currently limited by permit condition to 0.10 lb/MMBTU. Filterable particulate matter emissions are further limited to 0.03 lb/MMBTU (30-day average) under 40 CFR Subpart UUUUU.

P:\04Jobs\0029900s\04_0029995.00\Work\FINAL 29995 APP DSI ACI air permit Application 022514 doc

TABLES

February 2014 GZA GeoEnvironmental, Inc.

ESTIMATED EMISSIONS FROM VARIOUS FUELS TABLE 2

Public Service Company of New Hampshire Portsmouth, New Hampshire Schiller Station

Pollutant	Actual Hourly Emissions	Potential Hourly	Potential Annual	Average Hourly	Average Hourly Emissions (1b/hr)	Potential Hourly	Potential Hourly Emissions (lb/hr)	Potential Annual 1	Potential Annual Emissions (tons/yr)
	Basis	Emissions Basis	Emissions	Unit 4	Unit 6	Unit 4	Unit 6	Unit 4	Unit 6
				Coal	100 to 10				Office and the second
NOx	0.28 Ib/MMBTU	0,50 Ib/MMBTU	0.46 Ib/MMBTU	159.60	159 60	287.00	287.00	1156.50	1156.50
00	0.5 lb/ton	0_5 lb/ton	0.5 lb/ton	11.25	11.25	11.25	11.25	49.30	49.30
PM	Test Data	0.1 lb/MMBTU	0.030 Ib/MMBTU	11.48	11.48	57,40	57.40	75.56	75.56
PM_{10}	67% PM	M4 %29	67% PM	69 2	69"L	38,46	38.46	50,62	50.62
PM _{2,5}	29% PM	29% PM	29% PM	3.33	3,33	16,65	16.65	21.91	21.91
SO ₂	1.13 lb SO2/MMBTU	2.40 lb SO2/MMBTU	2,40 lb SO2/MMBTU	649.95	649.95	1377.60	1377,60	6033.89	6033.89
NOC	0.06 lb/ton	0.06 lb/ton	0,06 lb/ton	1.35	1,35	1.35	1,35	5.92	5.92
				Coal / Biomass					The same of the sa
NOx	0.28 Ib/MMBTU	0.50 lb/MMBTU	0.46 Ib/MMBTU	159.35	159.35	287.00	287.00	1156.50	1156,50
00	0.5 lb/ton	0.5 lb/ton	0.5 lb/ton	11.25	11,25	11,25	11,25	49,30	49.30
PM	Test Data	0.1 Ib/MMBTU	0.030 Ib/MMBTU	11,48	11.48	57,40	57.40	75,56	75.56
PM_{10}	67% PM	M4 %49	67% PM	69"L	69'L	38.46	38.46	50.62	50.62
PM _{2.5}	29% PM	29% PM	29% PM	3,33	3,33	16,65	16.65	21,91	21.91
SO ₂	1.13 lb SO2/MMBTU	2 40 lb SO2/MMBTU	2.40 lb SO2/MMBTU	649.95	649,95	1377.60	1377.60	6033.89	6033.89
NOC	0,06 lb/ton	0.06 lb/ton	0.06 lb/ton	34.44	34.44	34.44	34.44	150.85	150.85
Section 1		N policy of the second		Number 6 Fuel Oil	Dia.				
NOX	0.26 Ib/MMBTU	0,50 lb/MMBTU	0.46 Ib/MMBTU	149.70	149.70	287.50	287.50	1158,51	1158.51
00	5.00 lb/Mgal	5.00 lb/Mgal	5.00 lb/Mgal	19.17	19.17	19.17	19.17	83.95	83.95
PM	Test Data	0.1 Ib/MMBTU	0.030 Ib/MMBTU	11.50	11,50	57.40	57.40	75,56	75.56
PM ₁₀	63% PM	63% PM	63% PM	7.25	7,25	36.16	36.16	47,60	47.60
PM _{2.5}	41% PM	41% PM	41% PM	4.72	4.72	23.53	23.53	30.98	30.98
SO ₂	155.08 lb/Mgal	314,00 lb/Mgal	314.00 lb/Mgal	594.48	594.48	1203.67	1203.67	5272.06	5272.06
NOC	0.76 lb/Mgal	0.76 lb/Meal	0.76 lb/Mgal	2.91	2,91	2.91	2.91	12,76	12.76

- 1. With the exception of filterable PM, the emissions basis for coal and No. 6 fitel estimated based on actual average emissions from 2009 and 2010.

 2. Filterable PM emissions were estimated based upon the Subpart UUUUU emission limit of 0.03 Ib/MMBTU.

 3. Potential emissions are estimated based on 574 MMBTU/Inf for coal and 575 MMBTU/Inf for oil, for each boiler and 8,760 operating hours per year.

 4. Maximum hourly emissions of NO_x, SO₂ and PM are limited by permit to 0.5 Ib/MMBTU, 2.4 Ib/MMBTU and 0.1 Ib/MMBTU, respectively.

 Maximum emissions of NO_x is also limited by permit to an annual average of 0.46 Ib/MMBTU.

 5. Potential emission of CO and VOC from coal combustion are estimated based on AP42 emission factors.

TABLE 3 SELECT ESTIMATED EMISSIONS FROM COAL COMBUSTION

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

Unit	SR4,SR6 Coal
PM10 Control Efficiency	98.9%
Proportion of Ash That is Fly ash	98%
Heat Value (MMBTU/ton)	25.50

Pollutant ⁴	SR4, SR6 Coal Concentration ¹ (ppm)	SR4, SR6 Emission Factor 2, 3 (lb/ton)			
Antimony	1	2.16E-05			
Arsenic	10.6	2.29E-04			
Beryllium	1.26	2.72E-05			
Cadmium	0.525	1.13E-05			
Cobalt	6.49	1.40E-04			
Chromium	18.6	4.01E-04			
Lead	8.1	1.75E-04			
Manganese	23.7	5.11E-04			
Mercury ⁵	0.0226	3.06E-02			
Nickel	16	3.45E-04			
Selenium	3.2	6.90E-05			
Hydrogen Chloride (chlorine) ^{6, 7}	319	5.10E-02			
Hydrogen Fluoride (fluorine) ^{6, 8}	65	5.48E-02			

Notes

- 1. Coal concentration data is from EPRI fuel database.
- 2. Emission factor assumes all metals in the coal (except mercury) are transferred to the ash and that fly ash comprises 98% of all ash.
- 3. Sample calculation: Coal combusted (tons) x 2000 (lb/ton) x concentration (ppm) / (1,000,000) x 98% fly ash proportion x (1 control efficiency).
- 4. Metal compounds are expressed as the parent metal.
- 5. Mercury emission factor for SR4 and SR6 calculated is based on the Subpart UUUUU emission limit of 1.2 lb/trillion BTU.
- 6. Acid gas emissions were calculated assuming all of the chloride and fluoride is converted to hydrogen fluoride and hydrogen chloride, respectively.
- 7. Hydrogen chloride emission factor is based on the Subpart UUUUU emission limit of 0.002 lb/MMBTU.
- 8. An estimated DSI control efficiency of 60% was applied to the hydrogen fluoride emission factor.

TABLE I CRITERIA PO LLUTANT INVENTORY

Public Service Compa ny of New Hampshire Schiller Station Portsmouth, New Hampshire

	SR4 (bio	omass)	SR6 (bi	omass)	SR4	(coal)	SR6	(coal)	SI	R4 (oil)	SR6	(oil)	SR4	(Gas)	SR6	(Gas)	SR 4	Totals	SR 6	Totals
Pollutant	Actual Emissions (tons/yr)	Potential Emissions (tons/vr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions ⁴ (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions ⁴ (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)
Fuel Use:	180 tons	19.719 tons	180 tons	19.719 tons	122,463 tons	197,188 tons	114,661 tons	197,188 tons	321,396 gal	33,579,971 gal	238,980 gal	33,579,971 gal	0.18 MMscf	0 MMscf	0-20 MMscf	0 MMscf				-
ruei ose.	0.03	3.70	0.03	3,70	1712 36	6033,89	1645.83	6033.89	24.92	5272.06	18.53	5272.06	0.00005	ä ,	0.00006		1,737.32	6,033_89	1,664.43	6,033,89
502		3,70	0.03	32.54	415,67	1156.50	406.61	1156.50	6.43	[158,5]	4.78	1158,51	0,012	-	0.01	-	422.40	1,158.51	411.99	1,158.51
NO _n	0.30	32,54	0,30				31.47	75.42	0.016	75,56	0.012	75.56	0.0002		0.0002	-	30.71	75.56	31,62	75,56
PM	0.07	4.44	0.07	4,44	30,62	75 42	Oir Control of the Co				0.008	47.60	0.0002		0.0002	20 00 00	20.58	50.53	21.20	50,53
PM ₁₀	0.05	5.92	0,05	5.92	20.51	50.53	21.08	50,53	0,010	47,60									0.22	
PM _{2.5}	0.05	5.03	0.05	5.03	8.88	21,87	9.12	21,87	0,007	30,98	0.005	30_98	0,0002		0,0002		8.93	30,98	9.22	30.98
	0.02	2.51	0,02	2.51	54.77	341.29	51.28	341.29	0.24	25.18	0.18	25.18	0.0005		0,0006		55.03	341,29	51.51	341_29
Condensable P M			0.81	88.73	30.62	49.30	28.67	49.30	0.80	83.95	0,60	83.95	0.007		0.009		32.23	88.73	30.89	88.73
CO	0.81	88.73	0.81	2.51	30.02	5.00	3.44	5.92	0.12	12.76	0.09	12.76	0.0005		0.0006		3.82	12.76	3,58	12.76

						Emission	Factors			
Fuel Type	SO ₂	NOv	СО	VOC	PM	PM10	PM2.5	Condensable PM	Heat Content	AP-42 Citations
Biomass	0.025 ([b/mmbtu]	0,22 (lb/mmbtu)	0.6 (Ib/mmbtu)	0.017 (jb/mmbtu)	0.054 (lb/mmbtu)	0.04 (Jb/mmbtu)	0.034 (lb/mmbtu)	0.017 (lb/mmbtu)	15 mmbtu/ton	Table 1.6-1 and 1.6-3
Coal	Site Data	Site Data	0,5 lb/ton	0,06 lb/ton	See Note 2	67% PM	29% PM	0 1S-0 03 (lb/mm btu)	25.5 mmbtu/ton	Tables 1:1-5, 1:1-6, 1:1-19, and onsite da ta
Oil	157S 1b/1,000 gal	40 lb/1000 gal	5 lb/1000 gal	0,76 lb/1000 gal	0.1 lb/1,000 gal	63% PM	41% PM	1.5 lb/1,000 gal	153.8 mmbtu/1,000 gal	Tables 1.3-1, 1.3-2, 1.3-4 and onsite data
Gas	0.6 lb/mmscf	140 lb/mmscf	84 lb/mmscf	5.5 lb/mmscf	1.9 lb/mmscf	1.9 lb/mmscf	1_9 lb/mmscf	5.7 lb/mmscf	N/A	Tables 1.4-1 and 1.4-2

- Notes:

 1. S = percent sulfur of the fuel. The actual a verage sulfur content of the #6 fue I combusted in 2009/2010 was 0.988%, therefore 0.988 was used as S in the calculations.

 2. Actual emissions are based on the ave rage of 2009 and 2010 actual I emissions.

 3. Actual emissions of NOx and SO2 from SR4 and SR6 are based on continuous monitoring data. Emission is of VOC and CO from SR4 and SR6 were estimated based on AP42 emission factors.

- Actual emissions of NOx and SO2 from SR4 and SR6 are based on continuous monitoring data. Emission so f VOC and CO from SR4 and SR6 were estimated based on AP42 emission factors.

 Actual PM emissions for SR4 (coal) and SR6 (coal) are based on unit spe cific emission factors derived from stack testing as reported to NH DES.
 SR4 (actual coal) = 0.02 lb PM / MMBTU, SR6 (actual coal) = 0.02 lb PM/MMBTU

 The ESP Efficiency of 99.2% for SR4 and SR6 was derived from stack testing data.

 Potential PM emissions for SR4 and SR6 are based on the Subpart UUUU U filterable PM emission limit of 0.03 lb/MMBTU

 PM, PM10 and PM2.5 emissions represent the filterable fraction for each particle size range.

 Actual cond ensable particulate matter emission is for coal combustion in SR4 and SR6 were estimated based upon an average coal sulfur content of 0.658 percent and 12,501 BTU per pound of coal 10. Potential con densable particulate matter emission in SR4 and SR6 were based upon an average coal sulfur content of 1.3 pounds of sulfur/MMBTU (1.66 %) and 12,750 BTU per pound of coal 11. An estimated heat content of 7500 BTU per pound (15 mmBTU/ton) was used for dry biomass combustion in SR4 and SR6.

TABLE 4 SUMMARY OF HAZARDOUS AIR POLLUTANT EMISSIONS

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

		SR4, SR6	SR4 and SR6	SR4 (b	niomass)	SR6 (b	niomass)	SR4	(coal)	SR6	(coal)	SR4	(oil)	SR	(oil)	SR4	(Gas)	SR	6 (Gas)	То	otals
Pollutant	SR4, SR6 Coal Emission Factor (lb/ton)	Biomass Emission Factor	Oil Emission Factor	Actual Emissions	Potential Emissions	Actual Emissions	Potential Emissions	Actual Emissions (tons/vr)	Potential Emissions	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/vr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/yr)	Potential Emissions (tons/vr)	Actual Emissions	Potential Emissions
	- ` ´	(lb/MMBTU)	(lb/1000 gal)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr) 19,719 tons	122.463 tons	(tons/vr) 197_188 tons	114,661 tons	197,188 tons	321,396 gal	33,579,971 gal	238,980 gal	33,579,971 gal	0.18 MMscf	0.00 MMscf	0.20 MMscf	0.00 MMscf	(tons/yr)	(tons/yr)
Fuel Use:	1 (25)	0.005.12		180 tons	19,719 tons	180 tons		8.76E-10	1,41E-09	8,20E-10	1,41E-09	321,390 gai	33,379,971 gai	236,980 gai	33,379,971 gai	0.18 IVIIVISCI	0.00 IVIIVISCI	0.20 Ministr	0.00 1911 1301	1.72E-09	2,82E-09
2,3,7,8-TCDD	1,43E-11	8.60E-12 6.40E-05	2.36E-04	1,16E-11 8,62E-05	1,27E-09 9,47E-03	1.16E-11 8.62E-05	1.27E-09 9.47E-03	8.70E=10	1,41E-09	8,20L-10	1.4112-09	3,79E-05	3.96E-03	2.82E-05	3.96E-03		-:-			2.38E-04	1.89E-02
1,1,1-Trichloroethane 2.4-Dinitrotoluene	2.80E-07	9.40E-07	2,3015-04	1.27E-06	1.39E-04	1.27E-06	1.39E-04	1.71E-05	2.76E-05	1,61E-05	2.76E-05	*	-	*	*		-	-		3.57E-05	2.78E-04
2-Chloroacetophenone	7.00E-06	7,40E-07	-	1.272.00	1,372 01	1.2.2.00	1,072.01	4.29E-04	6,90E-04	4,01E-04	6.90E-04	2	_	2	2	-	12	33	140	8.30E-04	1.38E-03
5-Methyl chrysene	2.20E-08	-	-	-		-	-	1.35E-06	2,17E-06	1.26E-06	2.17E-06				- :	-			20	2.61E-06	4.34E-06
Accomplete	5.10E-07	9.10E-07	2.11E-05	1.23E-06	1.35E-04	1.23E-06	1.35E-04	3.12E-05	5.03E-05	2,92E-05	5.03E-05	3.39E-06	3.54E-04	2.52E-06	3.54E-04	1,60E-10	:-	1.83E-10		6.88E-05	7.09E-04
Acenaphthylene	2.50E-07	5,00E-06	2,53E-07	6.73E-06	7.39E-04	6.73E-06	7.39E-04	1.53E-05	2,46E-05	1,43E-05	2.46E-05	4.07E-08	4.25E-06	3.02E-08	4.25E-06	1.60E-10		1.83E-10		4.32E-05	1.48E-03
Acetaldehyde	5.70E-04	1.90E-04		2.56E-04	2.81E-02	2.56E-04	2.81E-02	3.49E-02	5,62E-02	3,27E-02	5,62E-02	•	i i	3			-	20	120	6.81E-02	1.12E-01
Acetophenone	1.50E-05	2.60E-07	940	3.50E-07	3,85E-05	3.50E-07	3.85E-05	9.18E-04	1.48E-03	8.60E-04	1.48E-03			*	*			17	31	1.78E-03	2.96E-03
Acrolein	2.90E-04	7,80E-05	•	1.05E-04	1.15E-02	1.05E-04	1.15E-02	1,78E-02	2.86E-02	1.66E-02	2,86E-02	2	2	2	- 4	-	:-		*	3.46E-02	5.72E-02
Anthracene	2,10E-07	3.00E-06	1,22E-06	4.04E-06	4,44E-04	4.04E-06	4.44E-04	1,29E-05	2,07E-05	1,20E-05	2.07E-05	1.96E-07	2.05E-05	1.46E-07	2.05E-05	2.14E-10		2.44E-10		3,33E-05	8,87E-04
Antimony	2.16E-05	4.20E-07	5.25E-03	5.65E-07	6.21E-05	5.65E-07	6.21E-05	1.32E-03	2.13E-03	1.24E-03	2.13E-03	8_44E-04	8.81E-02	6.27E-04	8,81E-02			(2.)	-	4.03E-03	1,76E-01
Arsenic	2.29E-04	1,00E-06	1.32E-03	1.35E-06	1,48E-04	1.35E-06	1.48E-04	1.40E-02	2.25E-02	1.31E-02	2.25E-02	2,12E-04	2.22E-02	1.58E-04	2.22E-02					2.75E-02	4.51E-02
Benzene	1.30E-03	3,30E-03	2.14E-04	4.44E-03	4.88E-01	4.44E-03	4.88E-01	7,96E-02	1.28E-01	7.45E-02	1.28E-01	3.44E-05	3.59E-03	2.56E-05	3.59E-03	1.87E-07		2.13E-07		1.63E-01	9,76E-01
Benz(a)anthracene	8,00E-08	6.50E-08	4.01E-06	8.75E-08	9.61E-06	8.75E-08	9.61E-06	4.90E-06	7.89E-06	4,59E-06	7.89E-06	6.44E-07	6.73E-05	4.79E-07	6.73E-05	1.60E-10	-	1.83E-10		1.08E-05	1.35E-04
Benzo(a)pyrene	3.80E-08	2.60E-06		3.50E-06	3.85E-04	3.50E-06	3.85E-04	2.33E-06	3.75E-06	2.18E-06	3.75E-06		*	*	-	1.07E-10	-	1.22E-10		1.15E-05	7.69E-04
Benzo(b)fluoranthene		1.00E-07	22	1.35E-07	1.48E-05	1.35E-07	1.48E-05	6.74E.06	1.000.05	6 21E 06	1.000.05	-			-	1.60E-10	-	1.83E-10		2.70E-07	2.96E-05
Benzo(b,j,k)fluoranthene	1,10E-07	_ €	1 407 06	-	*		-	6,74E-06	1.08E-05	6.31E-06	1,08E-05	2 2017 02	2.48E-05	1.77E-07	2.490.05					1.30E-05 4.15E-07	2.17E-05 4.97E-05
Benzo(b,k)fluoranthene		2 (05 00	1,48E-06	2.500.00	2.050.00	3 50E 00	2.050.07	3,63	-	-		2.38E-07			2.48E-05	-	#	20	-	7,00E-09	7.69E-07
Benzo(e)pyrene	0.000.00	2.60E-09	2.200.00	3.50E-09	3.85E-07	3,50E-09	3,85E-07	1.650.06	2 66E 06	1,55E-06	2.66E-06	3.63E-07	3.79E-05	2,70E-07	3.79E-05	1.07E-10		1.22E-10		4.09E-06	7.59E-07
Benzo(g,h,i)perylene	2.70E-08	9.30E-08	2.26E-06	1.25E-07	1,38E-05 5,32E-06	1.25E-07 4.85E-08	1,38E-05 5,32E-06	1,65E-06	2.66E-06	1,55E-06	2.66E-06	3.03E-07	3.79E-05	2,70E-07	3.79E-03	1,60E-10		1.83E-10		9.73E-08	1.06E-05
Benzo(k)fluoranthene	7.000.04	3,60E-08		4.85E-08	3,32E-00	4,83E-08	5,32E-00	4,29E-02	6.90E-02	4.01E-02	6.90E-02				- î	1.0012-10		1,8515-10		8.30E-02	1.38E-01
Benzyl chloride	7.00E-04	1.90E-06	2.78E-05	2,56E-06	2.81E-04	2.56E-06	2.81E-04	1.66E-03	2.68E-03	1.56E-03	2,68E-03	4.47E-06	4.67E-04	3.32E-06	4.67E-04			- 2		3.23E-03	5,36E-03
Beryllium Biphenyl	2.72E-05 1.70E-06	1.90E-00	2,78E-03	2,30E-00	Z.81E-04	2,302-00	2,6112-04	1.04E-04	1.68E-04	9,75E-05	1.68E-04	4.475-00	4.072-04	5.5215-00	4,07E-04			-		2.02E-04	3,35E-04
	7.30E-05	4.70E-08		6,33E-08	6.95E-06	6.33E-08	6.95E-06	4.47E-03	7.20E-03	4.19E-03	7.20E-03	2	-	-	-	-		-		8.66E-03	1,44E-02
Bis(2-ethylhexyl)phthalate (DEHP) Bromoform	3.90E-05	4.70E-08		0,552-08	0.75E-00	0.3312-00	0,75E 00	2.39E-03	3.85E-03	2,24E-03	3,85E-03	2		-	-		2	21	2	4.62E-03	7.69E-03
Cadmium	1.13E-05	1,90E-06	3,98E-04	2.56E-06	2.81E-04	2.56E-06	2.81E-04	6.93E-04	1.12E-03	6.49E-04	1.12E-03	6.40E-05	6.68E-03	4.76E-05	6.68E-03				1.00	1.46E-03	1.34E-02
Carbon disulfide	1.30E-04	1.30E-03	3,76E 04	1.75E-03	1.92E-01	1.75E-03	1.92E-01	7,96E-03	1.28E-02	7.45E-03	1.28E-02	-		=	=	-	-	(9)	:=:	1.89E-02	3.85E-01
Carbon tetrachloride	1.502-04	8.90E-07		1.20E-06	1.32E-04	1.20E-06	1.32E-04					- 2	€			- 1	2	727		2.40E-06	2.63E-04
Chlorine		7.90E-04	(¥i	1.06E-03	1.17E-01	1.06E-03	1.17E-01	(8)		-				-	-					2.13E-03	2.34E-01
Chlorobenzene	2,20E-05	1,70E-05	9 <u>2</u>	2.29E-05	2.51E-03	2,29E-05	2.51E-03	1.35E-03	2.17E-03	1.26E-03	2.17E-03		*	2	#		94			2,65E-03	5.03E-03
Chloroform	5.90E-05	3.10E-05		4.17E-05	4.58E-03	4.17E-05	4.58E-03	3,61E-03	5,82E-03	3.38E-03	5.82E-03			-		2	=	(a)		7.08E-03	1.16E-02
2-chloronaphthalene	14	2.40E-09	(#)	3.23E-09	3.55E-07	3.23E-09	3.55E-07	ne:	F:	7.		*	5.	5						6.46E-09	7,10E-07
Chromium	2.60E-04	6.00E-07	8.45E-04	8.08E-07	8.87E-05	8.08E-07	8.87E-05	1.59E-02	2.56E-02	1.49E-02	2,56E-02	1.36E-04	1.42E-02	1.01E-04	1.42E-02	-				3.11E-02	5.13E-02
Chromium(VI)	7.90E-05	4.90E-07	2.48E-04	6.60E-07	7.25E-05	6.60E-07	7.25E-05	4.84E-03	7.79E-03	4.53E-03	7.79E-03	3.99E-05	4.16E-03	2.96E-05	4.16E-03		12		-	9.44E-03	1.56E-02
Chrysene	1.00E-07	3.80E-08	2.38E-06	5.12E-08	5.62E-06	5,12E-08	5.62E-06	6.12E-06	9.86E-06	5,73E-06	9.86E-06	3.82E-07	4.00E-05	2.84E-07	4.00E-05	1.60E-10		1.83E-10		1.26E-05	7.99E-05
Cobalt	1.40E-04	1.90E-07	6.02E-03	2,56E-07	2.81E-05	2.56E-07	2.81E-05	8.57E-03	1,38E-02	8,02E-03	1.38E-02	9.67E-04	1.01E-01	7.19E-04	1.01E-01		*	(4)	*	1.83E-02	2.02E-01
Cumene	5.30E-06	ă) e	-				3.25E-04	5.23E-04	3.04E-04	5,23E-04	-		. 3		-				6.28E-04	1.05E-03
Cyanide	2.50E-03	-	[40]		*	781		1,53E-01	2.46E-01	1,43E-01	2.46E-01					-	-	-	-	2.96E-01	4.93E-01
Decachlorobiphenyl		2.70E-10	16	3.63E-10	3.99E-08	3.63E-10	3.99E-08	(#)	-			0.607.05	0.007.05	2.007.07	2.007.07	1.075.10		1 22E 10	- 22	7,27E-10	7.99E-08
Dibenzo(a,h)anthracene	-	9.10E-09	1.67E-06	1,23E-08	1,35E-06	1.23E-08	1,35E-06	027	-	-		2.68E-07	2.80E-05	2.00E-07	2,80E-05	1.07E-10		1.22E-10	•	4,93E-07	5.61E-05
Dichlorobenzene	:-			4 4 4 7 4 9	1.00=.00	1.015.00	1 005 05	(±				-	-			1.07E-07	- :	1,22E-07		2.29E-07	2,66E-07
Dichlorbiphenyl	=	9.00E-10	120	1.21E-09	1.33E-07	1,21E-09	1.33E-07	(**)			-	*		<u> </u>	8		-			2.42E-09 7.81E-05	8.58E-03
1,2-Dichloroethane	4.005.06	2,90E-05		3.90E-05	4.29E-03	3.90E-05	4.29E-03	2 04E 03	4 72E 02	2,75E-03	4.73E-03	-				2				5.69E-03	9.47E-03
Dimethyl sulfate	4.80E-05	2 205 05	X 8	4.447.05	4 000 03	4.44E-05	4.88E-03	2.94E-03	4.73E-03	2.75E-03	4,73E-03			-					-	8.89E-05	9.47E-03 9.76E-03
Di-n-butyl phthalate	-	3,30E-05		4.44E-05	4.88E-03 4.88E-03	4,44E-05 4,44E-05	4.88E-03	(#)				2	*					-		8,89E-05	9.76E-03
1,2,Dichloropropane		3,30E-05		4,44E-05 2.83E-06	4.88E-03 3.11E-04	2,83E-06	3.11E-04	-	-			- 1				-			2	5,65E-06	6.21E-04
4,6-Dintro-2-methylphenol	-	2.10E-06 4.80E-07	(#) (#)	6.46E-07	7.10E-05	6.46E-07	7.10E-05	740									-	-		1.29E-06	1.42E-04
2,4-Dinitrophenol	9.40E-05	4.80E-07 1.50E-03	6.36E-05	2.02E-03	2,22E-01	2,02E-03	7.10E-03 2.22E-01	5.76E-03	9.27E-03	5.39E-03	9.27E-03	1.02E-05	1.07E-03	7.60E-06	1.07E-03	8		-		1,52E-02	4.44E-01
Ethylbenzene Ethyl phloride	4.20E-05	1.50E-03	0.30E-03	2.02E-03	2,22E-01	Z,02E-03	2,225-01	2,57E-03	4.14E-03	2,41E-03	4.14E-03	1,021-03	1.0712-03	7.0012-00	1.0712-03	-	-			4.98E-03	8.28E-03
Ethyl chloride Ethylene dibromide	1.20E-06		- 3				- :	7.35E-05	1.18E-04	6.88E-05	1.18E-04	-	-	- î	-	-	-			1.42E-04	2.37E-04
Ethylene dichloride	4.00E-05					16		2.45E-03	3.94E-03	2.29E-03	3.94E-03	-		*	*		:#		*	4.74E-03	7.89E-03
Fluoranthene	7.10E-07	1.60E-06	4.84E-06	2.15E-06	2.37E-04	2.15E-06	2.37E-04	4.35E-05	7,00E-05	4.07E-05	7.00E-05	7.78E-07	8.13E-05	5.78E-07	8.13E-05	2.67E-10	2	3.05E-10		8.98E-05	4.73E-04
Fluorene	9.10E-07	3.40E-06	4.47E-06	4.58E-06	5.03E-04	4.58E-06	5.03E-04	5.57E-05	8,97E-05	5.22E-05	8.97E-05	7.18E-07	7.51E-05	5.34E-07	7.51E-05	2.49E-10		2,84E-10		1.18E-04	1.01E-03
Formaldehyde	2,40E-04	1.30E-03	3.30E-02	1.75E-03	1.92E-01	1.75E-03	1.92E-01	1.47E-02	2,37E-02	1,38E-02	2.37E-02	5.30E-03	5.54E-01	3.94E-03	5.54E-01	6.68E-06	*	7.61E-06	· ·	4.12E-02	1.11E+00
Heptachlorobiphenyl	2,402-04	6,60E-11	51302 02	8.89E-11	9.76E-09	8.89E-11	9.76E-09						-			3		-	100	1.78E-10	1.95E-08
Hexachlorobenzene		1.00E-06		1.35E-06	1.48E-04	1.35E-06	1.48E-04		-	-				-		:				2.69E-06	2.96E-04
Hexachlorobiphenly	2	8.00E-10		1.08E-09	1.18E-07	1.08E-09	1.18E-07	36	*	- 1	160	3:		*			*			2.15E-09	2.37E-07
Hexane	6.70E-05	2.90E-04		3,90E-04	4.29E-02	3.90E-04	4.29E-02	4.10E-03	6.61E-03	3,84E-03	6.61E-03			×	- 4	1.60E-04	-	1.83E-04		9.07E-03	8.58E-02
Hydrogen Chloride	7.41E-01	4.19E-04		5.64E-04	6.20E-02	5.64E-04	6.20E-02	3.12E+00	5.03E+00	2.92E+00	5,03E+00		-	-					-	6.05E+00	1.01E+01
Hydrogen fluoride	5.48E-02			(4)	-	-	(4.)	3.35E+00	5.40E+00	3.14E+00	5.40E+00		5	-		-	-	-		6.49E+00	1.08E+01

TABLE 4 SUMMARY OF HAZARDOUS AIR POLLUTANT EMISSIONS

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

		SR4, SR6	SR4 and SR6	SR4 (b	iomass)	SR6 (b	iomass)	SR4	(coal)	SR6 ((coal)	SR4	(oil)	SR6	(oil)	SR4	(Gas)	SR6	(Gas)	To	otals
Pollutant	SR4, SR6 Coal Emission Factor (lb/ton)	Biomass Emission Factor	Oil Emission Factor	Actual Emissions	Potential Emissions	Actual Emissions	Potential Emissions	Actual Emissions	Potential Emissions	Actual Emissions	Potential Emissions	Actual Emissions	Potential Emissions	Actual Emissions (tons/yr)	Potential Emissions (tons/vr)	Actual Emissions (tons/yr)	Potential Emissions (tons/yr)	Actual Emissions (tons/vr)	Potential Emissions (tons/yr)	Actual Emissions	Potent Emissi
		(lb/MMBTU)	(lb/1000 gal)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	A		1.60E-10	(toris/y1)	1.83E-10	(tolls/y1)	7.47E-06	2.57E-
Indeno(1,2,3-cd)pyrene	6,10E-08	8.70E-08	-	1.17E-07	1_29E-05	1.17E-07	1.29E-05	3.74E-06	6.01E-06	3,50E-06	6.01E-06	3.44E-07	3.59E-05	2,56E-07	3.59E-05	1,60E-10		1,63E-10		6.00E-07	7.19E-
Indo(1,2,3-cd)pyrene			2.14E-06					2.550.00	6 82E 02	3.33E-02	5,72E-02						7.51 7.25			6.88E-02	1.14E-
Isophorone	5.80E-04						0.505.04	3.55E-02	5.72E-02		1.72E-02	2.43E-04	2.54E-02	1.80E-04	2.54E-02	-	72			2.11E-02	5.07E
Lead	1.75E-04	5.80E-06	1.51E-03	7.81E-06	8.58E-04	7.81E-06	8.58E-04	1.07E-02	1.72E-02	1.00E-02		4.82E-04	5.04E-02	3.58E-04	5.04E-02					6.18E-02	1.01E
Manganese	5.11E-04	1.50E-04	3.00E-03	2.02E-04	2.22E-02	2.02E-04	2.22E-02	3.13E-02	5.04E-02	2.93E-02	5.04E-02									3.63E+00	6.03E
Mercury	3,06E-02	6.60E-07	1.13E-04	8.89E-07	9.76E-05	8.89E-07	9.76E-05	1.87E+00	3.02E+00	1.75E+00	3.02E+00	1.82E-05	1.90E-03	1.35E-05	1.90E-03	-				1.90E-02	3,161
Methyl bromide	1,60E-04	1.50E-05	_ ×	2.02E-05	2.22E-03	2.02E-05	2,22E-03	9,80E-03	1.58E-02	9.17E-03	1.58E-02	75.	-	•		1 COE 10	1/21	1.83E-10	-	3.43E-10	3.10
3-MethylChloranthene				-:	120				-	-	-		*		(e :	1,60E-10				6.29E-02	1.05
Methyl chloride	5.30E-04	4.00E-05		5.39E-05	5.92E-03	5.39E-05	5,92E-03	3.25E-02	5.23E-02	3.04E-02	5.23E-02				-	•	*	•		2.02E-02	3.35
Methyl hydrazine	1.70E-04			+:	#1	*	52	1.04E-02	1.68E-02	9.75E-03	1.68E-02	-	-	•			74	-		2.37E-03	3,94
Methyl methacrylate	2.00E-05	740	· ·	27	(#)		8	1.22E-03	1,97E-03	1,15E-03	1.97E-03	14.1	380	555	1,61	*					6.90
Methyl tert butyl ether	3.50E-05	*						2,14E-03	3,45E-03	2.01E-03	3.45E-03	40	547		(6:	-	340	*		4.15E-03 3.58E-02	1.60
Methylene chloride	2.90E-04	5.40E-04	*	7,27E-04	7.99E-02	7,27E-04	7.99E-02	1.78E-02	2.86E-02	1,66E-02	2,86E-02	-	-		-	-	1.61				
Methylisobutylketone	V-	2.30E-05	2	3.10E-05	3.40E-03	3.10E-05	3.40E-03	×	3	(3)		2.0	5.00	:	•	2145.00		2.445.00		6.19E-05	6.80
2-Methylnaphthalene		1.60E-07		2.15E-07	2.37E-05	2.15E-07	2.37E-05	- 12	- 2	N	4	(90)		163	160	2.14E-09) (2.44E-09	-	4.35E-07	
Monochlorobiphenyl		2,20E-10	3:	2.96E-10	3.25E-08	2.96E-10	3,25E-08		-		-				1/21) 4	1105.00	*	5_92E-10	6.5
Naphthalene	1.30E-05	1,64E-04	1.13E-03	2.21E-04	2.43E-02	2.21E-04	2.43E-02	7.96E-04	1.28E-03	7.45E-04	1.28E-03	1.82E-04	1.90E-02	1.35E-04	1.90E-02	5.43E-08		6.19E-08		2,30E-03	4.8
Nickel	3.45E-04	2.90E-06	8.45E-02	3.90E-06	4.29E-04	3.90E-06	4,29E-04	2.11E-02	3.40E-02	1.98E-02	3.40E-02	1.36E-02	1_42E+00	1.01E-02	1.42E+00	*				6,46E-02	2.84
4-nitrophenol	-	3.30E-07		4,44E-07	4.88E-05	4.44E-07	4.88E-05			-	- 22	- Sel	- 2	144	/ 61	-	(#I			8.89E-07	9.7
OCDD		(a)	3.10E-09	-	196		*	100	35	983		4.98E-10	5,20E-08	3.70E-10	5.20E-08					8.69E-10	1.0
Pentachlorobiphenyl		1.80E-09	3	2.42E-09	2.66E-07	2,42E-09	2.66E-07	-			33						193	5	-	4.85E-09	5,3
Pentachlorophenol		4,60E-08		6.19E-08	6.80E-06	6.19E-08	6,80E-06				20	120	(F)	(4)	. F¥T		G-6	÷	*	1.24E-07	1,30
Pervlene	2	5,20E-10	-	7.00E-10	7.69E-08	7.00E-10	7.69E-08			:57	120			_ ·				<u> </u>	-	1.40E-09	1.54
Phenanthrene	2,70E-06	7.00E-06	1.05E-05	9.42E-06	1.04E-03	9.42E-06	1.04E-03	1.65E-04	2.66E-04	1.55E-04	2.66E-04	1,69E-06	1.76E-04	1.25E-06	1.76E-04	1.51E-09		1.73E-09	-	3,42E-04	2.0
Phenol	1.60E-05	1.40E-05		1.88E-05	2.07E-03	1.88E-05	2.07E-03	9.80E-04	1.58E-03	9.17E-04	1.58E-03	- 3	-	:45	[#L	-:	De:	×		1.93E-03	4.14
Propionaldehyde	3.80E-04	6.10E-05		8.21E-05	9.02E-03	8.21E-05	9.02E-03	2,33E-02	3.75E-02	2.18E-02	3,75E-02				- F		141		-	4.52E-02	7.49
Propyelene Oxide	0,002 01			-		2		-	-	:= :		98	286		180	-					
Pyrene	3.30E-07	3.70E-06	4.25E-06	4.98E-06	5.47E-04	4.98E-06	5,47E-04	2.02E-05	3,25E-05	1.89E-05	3.25E-05	6.83E-07	7.14E-05	5.08E-07	7.14E-05	4.45E-10	363	5.08E-10	*	5_03E-05	1.09
Selenium	6.90E-05	3.00E-06	6.83E-04	4.04E-06	4.44E-04	4.04E-06	4.44E-04	4,22E-03	6.80E-03	3.96E-03	6.80E-03	1.10E-04	1.15E-02	8.16E-05	1.15E-02		101	2	-	8.38E-03	2,2
Styrene	2.50E-05	6,40E-04	- 0.002 01	8.62E-04	9.47E-02	8.62E-04	9.47E-02	1.53E-03	2.46E-03	1,43E-03	2.46E-03			(#)	1.00					4.69E-03	1.8
tetrachlorodibenzo-p-dioxins	2.30E-03	4.70E-10	-	6.33E-10	6.95E-08	6.33E-10	6,95E-08		147	541	(20)	882	340	7.61	140	*		*	*	1,27E-09	1,39
2.3.7.8-tetrachlorodibenzofuran		9.00E-11		1.21E-10	1,33E-08	1.21E-10	1.33E-08	:-	-					120	72				4	2.42E-10	2,6
Tetrachlordibenzofurans		7,50E-10	-	1.01E-09	1.11E-07	1.01E-09	1.11E-07	-	201	(+)		175	888	(3.5)	Te:					2,02E-09	2.2
Tetrachlorobiphenyl	+-:-	3.40E-09		4.58E-09	5.03E-07	4.58E-09	5.03E-07	19/	*	201	320	547		28	16:	8	-:			9.15E-09	1.0
Tetrachloroethylene	4.30E-05	5.20E-05		7.00E-05	7.69E-03	7.00E-05	7.69E-03	2.63E-03	4.24E-03	2.47E-03	4.24E-03	-		(2)	16	. .	-	-		5.24E-03	1.5
	2.40E-04	2.90E-05	6.20E-03	3.90E-05	4.29E-03	3.90E-05	4.29E-03	1.47E-02	2.37E-02	1.38E-02	2.37E-02	9.96E-04	1.04E-01	7.41E-04	1.04E-01	3.03E-07		3.45E-07		3.03E-02	2.0
Toluene	2,40E-04	2.80E-05	0,20E-03	3,77E-05	4.14E-03	3.77E-05	4.14E-03	1.472 02	-	*	4			(4)		*	E .			7.54E-05	8.2
Trichloroethylene Trichlorobiphenyl		5.50E-09		7.40E-09	8.13E-07	7.40E-09	8.13E-07	-	-	-	- 5	- 2	200	(/ <u>a</u> =			E:	2	*	1.48E-08	1.6
		2.20E-07	-	2.96E-07	3.25E-05	2.96E-07	3.25E-05	-	47											5,92E-07	6.5
2,4,6-Trichlorophenol	-	1.80E-05		2.42E-05	2.66E-03	2.42E-05	2.66E-03	-	40	14)	-						-	-		4,85E-05	5.3
Vinyl chloride	7.600.06			Z.4ZE-UJ	2.00E-03	Z,42E-03	2,0015-03	4.65E-04	7.49E-04	4.36E-04	7.49E-04	- 2		(a)			=	*		9.01E-04	1.5
Vinyl acetate	7.60E-06	2.80E-05	1.09E-04	3.77E-05	4.14E-03	3.77E-05	4.14E-03	2.27E-03	3.65E-03	2.12E-03	3.65E-03	1.75E-05	1.83E-03	1.30E-05	1.83E-03		=	2	2	4.49E-03	8.2
Xylenes	3.70E-05	Z-80E-03	1.090-04	J. 3.77E-03	4.1415-03	3.112-03	4,141,703	2 2 11 7 3	3.032 03	2,122,03	5,002.00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					•				
Total All HAP				1.51E-02	1.66E+00	1.51E-02	1,66E+00	9.00E+00	1.45E+01	8.43E+00	1.45E+01	2.33E-02	2.43E+00	1.73E-02	2.43E+00	1.68E-04	5	1.91E-04	*	17.50	2
TOTAL VILLIA				4.44E-03	4.88E-01	4.44E-03	4.88E-01	3.35E+00	5.40E+00	3.14E+00	5.40E+00	1.36E-02	1.42E+00	1.01E-02	1.42E+00	1.60E-04		1.83E-04	-	6.49	

MAJOR MODIFICATION APPLICABILITY EVALUATION FOR NSR AND PSD TABLE 5

Public Service Company of New Hampshire Portsmouth, New Hampshire Schiller Station

Pollutant	Program	Post - Project	SR4 and SR6 2009/2010 Actual	Contemporaneous	Net Emissions Increase	Significant Emissions / Major	Proposed Installation
		Emissions (tons/yr)	Emissions (tons/yr)	Decreases (tons/yr)	(tons/yr)	Source Threshold (tons/yr)	Significant? (Yes/No)
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		H 32 0 30 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NOx	NSR	833.6	833.6	0.0	0.0	25	No
NO_2	PSD	833.6	833.6	0.0	0.0	25	No
00	PSD	60.7	60.7	0.0	0.0	100	No
PM	PSD	62.2	62.2	0.0	0.0	25	No
PM _{2.5}	PSD	18.2	18.2	0.0	0.0	10	No
SO_2	PSD	3401.3	3401.3	0.0	0.0	40	No
VOC	NSR	7.0	7.0	0.0	0.0	25	No
Lead	PSD	0.021	0.021	0.0	0.0	9.0	No
Sulfuric Acid Mist	PSD	5.4	5.4	0.0	0.0	7	No
H ₂ S/TRS	PSD	0.0	0.0	0.0	0.0	10	No
CO ₂	N/A	607,171	607,171	0.0	0.0	75,000	No

Note:

USEPA AP-42 emission factors were used when CEM data was not available.
 Installation and operation of DSI is anticipated to result in post-project net reductions in SO₂ and sulfuric acid mist emissions from SR4 and SR6. No data is available to quantify these reductions at this time.

APPENDIX A

APPLICATION FORMS

STATE OF NEW HAMPSHIRE Department of Environmental Services Air Resources Division

P.O. Box 95

Concord, NH 03302-0095 Telephone: 603-271-1370

FEB 27 2014

General Information for All Permit Applications

FACILITY INFORMAT A. Type of Application:	□ New		Renewal		Modification
B. Physical Location:			C. Mailing Addre	ss:	
•			780 North Commer		
Schiller Station Facility Name			Street/P.O. Box	Ciai Street	
-			Manchester	NH	03101
400 Gosling Rd Street			Town/City	State	Zip Code
	NIII 02901		603-431-2550		• data====
Portsmouth Town/City	NH 03801 State Zip Code		Telephone Number		
Town/City	State Zip Code		Telephone Hamber		
D. USGS Coordinates:	UTM	or	Latit	ude/Longitud	e
ī	Easting: 354770	Deg	Min	1	Sec
	1=====				
1	Northing: 4772950	Deg	IVIIII	•	
E. Owner:			F. Parent Corpor	ation:	
Public Service Company of	New Hampshire		Northeast Utilities		
Company			Company		
780 North Commercial Stre	et				
Street/P.O. Box			Contact Person/Title		
Manchester	NH 03101		56 Prospect Street		
Town/City:	State Zip Code		Street/P.O. Box		
603-624-5008			Hartford	CT	06130
Telephone Number			Town/City:	State	Zip Code
			Telephone Number		
G. Contact Information					
1. General/Technical Con	tact:		2. Application Pr	eparation:	
Sheila A. Burke			GZA GeoEnvironn	nental, Inc.	
Contact Person			Company		
Senior Compliance Consulta	ant		Kenneth D. Boivin		
Title			Contact Person		
780 North Commercial Stre	et		380 Harvey Road		
Address			Address		
Manchester	NH 03101		Manchester	NH	03103
Town/City	State Zip Code		Town/City	State	Zip Code
603-634-2512	•		603-232-8719		
Telephone Number			Telephone Number		
sheila.burke@nu.com			kenneth.boivin@gz	za.com	
F-mail Address			E-mail Address		

Form ARD-1

03101

Zip Code

State

3. Legal Contact:

or negar commen		
Linda Landis		
Contact Person		
Senior Counsel		
Title		
780 North Commercial Street		
Address		
Manchester	NH	03101
Town/City	State	Zip Code
603-634-2700		
Telephone Number		
linda.landis@nu.com		
E-mail Address		

4. Invoicing Contact:

Sheila A. Burke

Contact Person

Senior Compliance Consultant

Title

780 North Commercial Street

Address

Manchester NH

Town/City 603-634-2512

Telephone Number

sheila.burke@nu.com

E-mail Address

H. Major Activity or Product Descriptions - List all activities performed at this facility:

Description of Source or Process	SIC Code
Electric power generation	4911

I. Other Sources or Devices - List sources or devices at the facility (other than those that are the subject of this application) that are permitted pursuant to Env-A 600:

Source or Device	Permit #	Expiration Date
SR5 and secondary coal crusher	TP-0085	03/31/2013
SRCT	TP-0106	04/30/2014
SREG, along with all other devices	TV-OP-053	Currently Draft

II. Total Facility Emissions Data:

Pollutant	CAS#	Actual (lb/hr)	Potential (lb/hr)	Actual (ton/yr)	Potential (ton/yr)
SO_2	7446-09-5	928.9	2,848.8	3,256.1	12,448.5
NO _x	NA	393.2	891.3	995.2	3,697.0
СО	630-08-8	19.8	127.2	65.4	599.3
PM	NA	33.2	71.6	58.1	309.9
PM _{2.5}	NA	5.2	28.1	17.7	209.9
VOC	NA	8.5	9.6	19.5	44.1

Note: For Regulated Toxic Air Pollutants list name and Chemical Abstract Service Number (CAS #) – use additional sheets if necessary.

Notes: See Tables 1 through 5 for additional facility emissions data.

Actual emissions are based on Calendar Year 2010 operations.

Revision Date: June 13, 2013

*	PSNH Schiller Station	Form	
Page 3 of 3		ARD-1	

III. Support Data *The following data must be submitted with this application:*

A copy of all calculations used in determining emissions;

A copy of a USGS map section with the site location clearly indicated; and (Previously Submitted)

A to-scale site plan of the facility showing: (Previously Submitted)

1. the locations of all emission points;

2. the dimensions of all buildings, including roof heights; and

3. the facility's property boundary.

IV. Certification (To be completed by a responsible official only):

I certify that I have the right, title, or interest in all of the property that is proposed for development or use because I own, lease, or have binding options to purchase all of the property proposed for development or use.

I am authorized to make this submission on behalf of the affected source or affected units for which this submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the information submitted in this document and all of its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

Print/Type Name: William H. Smagula, P.E. Title: PSNH Vice President - Generation

Signed: William H. Juguela Date: February 27, 2014

E-mail Address: _william.smagula@nu.com

Revision Date: June 13, 2013

STATE OF NEW HAMPSHIRE Department of Environmental Services Air Resources Division

Form ARD-2

Information Required for Permits for Fuel Burning Devices RECEIVED NEW HAMPSHIRE

Date Construction		SR4		AIR RESOURCES DIVISION
	952	D	evice Start-Up Date:	1952
A. Boiler Not A	pplicable			
Foster Wheeler			FW	
Boiler Manufacturer			Boiler Model Number	
90-1628			574 (coal) / 575 (oi	1)
Boiler Serial Number			Gross Heat Input Namepla	te Rating (MMBtu/hr)
NA			CE RO Coal, PEC	
Burner Manufacturer			Burner Model Number Coal: 22.51 ton/hr (gal/hr (@12 750 BTIJ/lb) gal/hr
				@0.15 MMBTU/gal) ton/hr
NA				hour (@7,500 BTU/lb)
Burner Serial Number			Potential Fuel Flow Rate	
1. Type of Burner:				
a. Solid Fuel:		b. Liquid Fuel:	c. Gaseous	Fuel:
Cyclone		Pressure Gun	Natur Natur Natur Natur Natur Natur Natur Natur	al Gas (Ignition)
□ Pulverized (□ wet	dry)	☐ Rotary Cup	☐ Propa	nne
☐ Spreader Stoker		☐ Steam Atomiza	tion	(specify):
Underfeed Stoker		Air Atomization	n	
Overfeed Stoker		Other (specify)		
☐ Hand-Fired				
☐ Fly Ash Re-injection	n			
Other (specify):				
2. Combustion Typ	e:			
Tangential Firing		Opposite End Firing	Limited Excess Fi	iring
☐ Staged Combustion	F	Biased Firing	One End Only Fir	ing
Other (specify):				
-				
3. Internal Combustion	Engines/C	ombustion Turbine	s Not Applicable	e
Manufacturer			Model Number	☐ gal/hr
Serial Number			Fuel Flow Rate	mmcf/l
		hp kW		
Engine Output Rating		L 011	Reason for Engine Use	

	ice:SR4		Form	
Page	e 2 of 4		ARD-2	
C	C. Stack Information			
	Is unit equipped with multiple stacks? Yes No	(if yes, provide data for each stack)		
	Identify other devices on this stack: None			
	Is Section 123 of the Clean Air Act applicable? Ye	es 🗵 No		
	Is stack monitoring used? X Yes No			
	If yes, Describe: SO2, NOx, CO2, flow, opacity	, CO(not certified)		
	Is stack capped or otherwise restricted? Yes X	0		
	If yes, Describe:			
	Stack exit orientation: Vertical Horizontal	☐ Downward		
	8.0 ft Stack ⊠ Inside Diameter (ft) □ Exit Area (ft²)	Discharge height above ground level (ft)		_
	230,000 (nominal)	76.3 ft/sec		
	Exhaust Flow (acfm)	Exhaust Velocity (ft/sec)		
	412 Exhaust Temperature (°F)	_		
TT	OPERATIONAL INFORMATION			
II.				
	A. Fuel Usage Information1. Fuel Supplier:	2. Fuel Additives:		
	Various	Not Applicable		
	Supplier's Name	Manufacturer's Name		
	Street	Street		
	Town/City State Zip Code	Town/City	State Zip Code	;
	Telephone Number	Telephone Number		
		Identification of Additive		_

3. Fuel Information (List each fuel utilized by this device):

Туре	% Sulfur	% Ash	% Moisture (solid fuels only)	Heat Rating (specify units)	Potential Heat Input (MMBtu/hr)	Actual Annual Usage (specify units)
Coal	1.66	5 - 8	5 - 8	12,750 Btu/lb	574	197,187.6 tons
#6 Oil	2.00	0.07	NA	150,000 Btu/gal	575	33,579,971 gal
Biomass	0.01-0.04	0.72-2.69	2.69-41.68	7500 Btu/lb	33.77	179.5 tons

Consumption Rate (gallons per 1000 gallons of fuel)

B. Hours of Operation

Hours per day: 24 Days per year: 365

Application Preparation Date: February 2014

Device: SR4 Page 3 of 4					Form ARD-2
III. POLLUTION CO	NTROL EQUIP	MENT Not	Applicable		•
A. Type of Equip	oment Note: if pro	ocess utilizes more i	than one control dev	vice, provide data fo	or each device
baffled se	ettling chamber		wide bodied c	cyclone	
long cone	_		irrigated long	cone cyclone	
7527	cyclone (i	nch diameter)	carbon absorp	otion	
	itic precipitator		irrigated elect	rostatic precipitator	
spray tow			absorption to	wer	
venturi so			baghouse		
-	ers (incineration)		packed tower	/column	
100000	catalytic reduction	1		catalytic reduction	
reburn	• • • • •			-	
other (specify): Overfire Air, Dry Sorbent Injection, Activated Carbon Injection					
B. Pollutant Inp	ut Information				
Pollutant	Temperature (°F)	Actual (lb/hr)	Potential (lb/hr)	Actual (ton/yr)	Potential (ton/yr)
SO_2	< 785°	456.5	1,380.0	1,646.2	6,044.4
NO _x	< 785°	Not Available	Not Available	Not Available	Not Available
СО	< 785°	8.2	65.1	30.3	88.7
PM	< 785°	Not Available	Not Available	Not Available	Not Available
PM _{2.5}	< 785°	Not Available	Not Available	Not Available	Not Available
VOC	< 785°	1.0	2.9	3.6	12.8
Note: Actual emis Method used to de	termine entering e		or 🛭 material ba	alance	
C. Operating Da	ta				
1. Capture Eff	ficiency: 100%	Verified by:	☐ test ⊠ calcul	ations	
2. Control Eff	iciency: <u>Varies</u> %	Verified by:	⊠ test □ calcul	ations	
3. Normal Op-	erating Conditions	s (supply the follow	ring data as applica	ble)	
230,000 (nom		< 785		Not Available	
Total gas volume the	_	Temperature (°F)		Percent Carbon Di	
$\frac{45 - 60 \text{ KVD}}{\text{Voltage}}$	C	Not Applica Spark Rate	ble	Not Applicab Milliamps	16

Not Applicable
Liquid Recycle Rate (gallons per minute)

0.6 - 8Pressure Drop (inches of water)

Device:	SR4	
Page 4 of 4		

Form ARD-2

IV. DEVICE EMISSIONS DATA:

Pollutant	Temperature (°F)	Actual (lb/hr)	Potential (lb/hr)	Actual (ton/yr)	Potential (ton/yr)
SO_2	< 785	456.5	1,377.6	1,646.2	6,033.9
NO _x	< 785	115.3	287.5	415.7	1,158.5
CO	< 785	8.2	11.3	29.5	88.7
PM	< 785	7.9	17.3	28.4	75.6
PM _{2.5}	< 785	2.3	7.1	8.2	31.0
VOC	< 785	1.0	2.9	3.6	12.8

Notes: Actual emissions are based on Calendar Year 2010 Emissions. Refer to Tables 1 through 5 for additional emissions data.

	4		1		
Mathad	11000	tΛ	determine	AVITING	emissions:
wichion	usvu	w	uctominic	CAILINE	CHITOSTOHS.

	emission factor	material balance
--	-----------------	------------------

NO_x, TSP. EMISSION FACTORS USED FOR CO,

VOC. ACTUAL EMISSIONS ARE 2010

EMISSIONS REPORTED TONS, LB/HR BASED

ON 2010 OPERATING HOURS.

STATE OF NEW HAMPSHIRE Department of Environmental Services Air Resources Division

Form ARD-2

Information Required for Permits for Fuel Burning Devices

NEW HAMPSHIRE

Date Construction Commenced:	1957	D	evice Start-Up Date:	AIR RESOURCES DIVISION 1957
A. Boiler Not	Applicable			
Foster Wheeler			FW	
Boiler Manufacturer			Boiler Model Number	
36-3413			574 (coal) / 575 (oi Gross Heat Input Nameplat	l) to Pating (MMRtu/hr)
Boiler Serial Number				
NA Burner Manufacturer			CE RO Coal, PEC	Oli gal/hr
Dulliot Manufactures			Coal: 22.51 ton/hr (
				@0.15 MMBTU/gal) —
NA Social Number			Biomass: 2.25 ton/l	nour (@7,500 BTU/lb)
Burner Serial Number			Potential Fuel Flow Rate	
1. Type of Burne	r:			
a. Solid Fuel:		b. Liquid Fuel:	c. Gaseous	Fuel:
Cyclone		Pressure Gun	Natur Natur Natur Natur Natur Natur Natur Natur	al Gas (Ignition)
□ Pulverized (□ w	et 🛛 dry)	Rotary Cup	☐ Propa	ne
Spreader Stoker	_ ,,	Steam Atomizat	ion Other	(specify):
Underfeed Stoker	ŕ	☐ Air Atomization		
Overfeed Stoker		_		
Hand-Fired			1	
Fly Ash Re-inject				
Other (specify):				
2. Combustion T	ype:			
☐ Tangential Firing	;	Opposite End Firing	Limited Excess Fi	iring
Staged Combusti	on 🔲 J	Biased Firing	One End Only Fir	ing
Other (specify):	_			
			_	
. Internal Combustic	on Engines/C	combustion Turbine	S Not Applicable	e
A. C. A			Model Number	
vianutacturer				1 1/1
vianuiacturer				☐ gal/hr ☐ mmcf/
Manufacturer Serial Number		☐ hp	Fuel Flow Rate	

Engine Output Rating

Device: SR6 Page 2 of 4	Form ARD-2
C. Stack Information	
Is unit equipped with multiple stacks? 🗌 Yes 🔀 No	(if yes, provide data for each stack)
Identify other devices on this stack: None	
Is Section 123 of the Clean Air Act applicable? Ye	es 🛮 No
Is stack monitoring used? X Yes No	
If yes, Describe: SO2, NOx, CO2, flow, opacity,	CO(not certified)
Is stack capped or otherwise restricted? Yes N	0
If yes, Describe:	
Stack exit orientation: Vertical Horizontal	☐ Downward
8.0 ft	226
Stack ⊠ Inside Diameter (ft) ☐ Exit Area (ft²)	Discharge height above ground level (ft)
230,000 (nominal)	76.3 ft/sec
Exhaust Flow (acfm)	Exhaust Velocity (ft/sec)
412	_
Exhaust Temperature (°F)	
II. OPERATIONAL INFORMATION	
A. Fuel Usage Information	
	2. Fuel Additives:
1. Fuel Supplier:	
Various	Not Applicable Manufacturer's Name
Supplier's Name	Manufacturer S Manie
Street	Street
Town/City State Zip Code	Town/City State Zip Code
Telephone Number	Telephone Number
	Identification of Additive
	Consumption Rate (gallons per 1000 gallons of fuel)

3. Fuel Information (List each fuel utilized by this device):

Туре	% Sulfur	% Ash	% Moisture (solid fuels only)	Heat Rating (specify units)	Potential Heat Input (MMBtu/hr)	Actual Annual Usage (specify units)
Coal	1.66	5 - 8	5 - 8	12,750	574	197,187.6 tons
#6 Oil	2.00	0.07	NA	150,000	575	33,579,971 gal
Biomass	0.01-0.04	0.72-2.69	2.69-41.68	7,500 Btu/lb	33.77	179.5 tons

B. Hours of Operation

Hours per day: 24 Days per year: 365

Application Preparation Date: February 2014

evice: SR6 age 3 of 4					Form ARD-2			
II. POLLUTION COM	NTROL EQUIP	MENT Not	Applicable					
A. Type of Equip	ment Note: if pro	ocess utilizes more i	than one control dev	rice, provide data fo	r each device			
baffled se	ttling chamber		wide bodied c	yclone				
long cone	•		irrigated long	cone cyclone				
multiple c	yclone (i	nch diameter)	carbon absorp	tion				
	tic precipitator	ŕ	irrigated electr	rostatic precipitator				
spray tow	• •		absorption tov	ver				
venturi sc			baghouse					
	ers (incineration)		packed tower/	column				
	catalytic reduction	1		catalytic reduction				
reburn		•	<u> </u>					
other (spe	Sorbent	Air, Dry Injection, d Carbon	-					
B. Pollutant Inpu	t Information							
Pollutant	Temperature (°F)	Actual (lb/hr)	Potential (lb/hr)	Actual (ton/yr)	Potential (ton/yr)			
SO ₂ < 785° 466.7 1,377.6 1,608.1 6,033.9								
NO _X < 785° Not Available Not Available Not Available Not Available								
CO < 785° 7.9 11.3 27.3 88.7								
PM	7.0							
PM _{2.5}	< 785°	Not Available	Not Available	Not Available	Not Available			
VOC	< 785°	0.8	2.9	2.6	12.8			
Note: Actual emis Method used to det	ermine entering e	on Calendar Year emissions:	or 🛭 material ba	ılance				
C. Operating Dat	a							
1. Capture Effi	iciency: 100%	Verified by:	test acalcul	ations				
2. Control Effi	ciency: <u>Varies</u>	Verified by:	⊠ test □ calcul	ations				
3. Normal Ope	rating Conditions	s (supply the follow	ving data as applica	ble)				
230,000 (nom:	-	< 785		Not Available				
Total gas volume th		Temperature (°F))	Percent Carbon Di				
45 – 60 KVDO		Not Applica Spark Rate	ble	Not Applicab Milliamps	le			
Voltage 0.6 – 8		Not Applica	ble					
Pressure Drop (inch	es of water)		Late (gallons per minute)	-				

Device:	SR6	
Page 4 of 4		

Form ARD-2

IV. DEVICE EMISSIONS DATA:

Pollutant	Temperature (°F)	Actual (lb/hr)	Potential (lb/hr)	Actual (ton/yr)	Potential (ton/yr)
SO_2	< 785	466.7	1,377.6	1,608.1	6,033.9
NO _x	< 785	118.9	287.5	409.7	1,158.8
CO	< 785	7.9	11.3	27.3	88.7
PM	< 785	7.8	17.3	26.7	75.6
PM _{2.5}	< 785	2.3	7.1	7.8	31.0
VOC	< 785	0.8	2.9	2.6	12.8

Note: Actual emissions are based on Calendar Year 2010 Emissions. Refer to Tables 1 through 5 for additional emissions data.

Met	hod used to	deter	mine exiting	emiss	ions:				
\boxtimes	stack test	\boxtimes	vendor data	\boxtimes	emission factor	material balance			
\boxtimes	other (spec	ify):			S USED FOR PC				
	NO _X , TSP. EMISSION FACTORS USED FOR CO,								
			VOC. ACT	UAL	EMISSIONS AI	RE 2010			
			EMISSION	S RE	PORTED TONS	, LB/HR BASED			
			ON 2010 O	PERA	ATING HOURS.				

APPENDIX B

HISTORICAL EMISSIONS DATA AND SUPPORTING CALCULATIONS AND DOCUMENTATION

TABLE B-1 2009 - 2013 EMISSIONS SUMMARY

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

			E = 11 7	SR4				- X	
Voca	11	Co. 1 (40.00)	Oil		A	Annual Emissions (tons)	ssions (ton:	S)	
rear	Non	Coal (tolls)	(gallons)	TSP	PM10	802	NOX	00	VOC
2009	7265	129998	341838	32.99	3.31	1828.30	428.50	33.36	4.03
2010	7213	114928	300954	28.41	5.59	1646.20	415.70	29.49	3.56
2011	3940	64587	736176	16.54	3.05	877.90	233.50	18.01	2.22
2012	1785	25424	146440	6.41	1.38	369.60	87.90	6.75	0.82
2013	3041	48154	204721	11.78	2.36	803.90	165.30	12.58	1.52

			3	SR6					
V	11	(4)	Oil		V = = =	Annual Emissions (tons)	ssions (ton	s)	
rear	Hours	Coal (tons)	(gallons)	TSP	PM10	802	XON	00	NOC
2009	6773	121001	408408	36.19	3.08	1720.00	413.20	31.27	3.79
2010	6892	108321	69552	26.74	3.14	1608.10	409.70	27.25	2.60
2011	3565	57870	316134	14.74	1.62	826.70	218.40	15.28	1.86
2012	1936	25365	200110	6.40	0.88	365.70	95.60	6.87	0.84
2013	2418	38877	186480	9.51	1.10	621.00	143.40	10.29	1.24

			2009/201	2009/2010 Average			941		
7. 1			Oil		A	Annual Emissions (tons)	ssions (ton	s)	
Unit	Hours	Coal (tons)	(gallons)	TSP	PM10	802	NOX	00	V0C
SR4	7239	122463	321396	30.70	4.45	1737.25	422.10	31.43	3.80
SR6	6832	114661	238980	31.47	3.11	1664.05	411.45	29.26	3.20
TOTALS		237124	560376	62.17	7.56	3401.30	833.55	69.09	66.9

FILE REFERENCE NOTATION

Confidential Business Information received on 2/27/14 with application # 14-0081. PSNH – Schiller Station AFS # 3301500012. Filed in VII. A. Confidential Business Information.

SUPPORTING CALCULATIONS TOTAL FACILITY EMISSIONS FOR ARD-1

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

POTENTIAL EMISSIONS

Pollutant	SR4	SR5	SR6	SRCT	SREG	Total
Hourly (lb/hr)						
SO ₂	1,377.6	76.2	1,377.6	17.4	0.001	2,848.8
NO _X	287.5	54.0	287.5	261.0	1.3	891.3
CO	11.3	72.0	11.3	31.9	0.8	127.2
PM	17.3	7.2	17.3	29.0	0.9	71.6
PM _{2.5}	7.1	4.7	7.1	8.4	0.9	28.1
VOC	2.9	3.6	2.9	0.0	0.2	9.6
Annual (tons/	yr)					
SO ₂	6,033.9	333.8	6,033.9	47.0	0.0	12,448.5
NO _X	1,158.5	236.5	1,158.5	1,143.2	0.3	3,697.0
СО	88.7	315.4	88.7	106.2	0.2	599.3
PM	75.6	31.5	75.6	127.0	0.2	309.9
PM _{2.5}	31.0	20.5	31.0	127.0	0.2	209.7
VOC	12.8	15.8	12.8	2.7	0.0	44.1

2010 ACTUAL EMISSIONS

Pollutant	SR4	SR5	SR6	SRCT	SREG	Total
Op. Hours	7213	7811	6892	72.27	27.38	31
Hourly (lb/hr)						
SO ₂	456.5	0.4	466.7	5,3	0.016	928.9
NO _X	115.3	42.6	118.9	92.8	23.7	393.2
СО	8.2	2.1	7.9	0.3	1.3	19.8
PM	7.9	0.7	7.8	0.5	16.4	33.2
PM _{2.5}	2.3	0.4	2.3	0.2	0.00018	5.2
VOC	1.0	3.4	0.8	0.043	3.3	8.5
ANNUAL (ton	is)					
SO ₂	1,646.2	1.6	1,608.1	0.2	0.0002	3,256.1
NO _X	415.7	166.1	409.7	3.4	0.3	995.2
CO	29.5	8.2	27.3	0.4	0.0	65.4
PM	28.4	2.7	26.7	0.02	0.2	58.1
PM _{2.5}	8.2	1.7	7.8	0.01	0.000002	17.7
VOC	3.6	13.3	2.6	0.002	0.05	19.5

Notes:

- 1. Potential emissions for SR5 are from Temporary Permit TP-0085, reissued March 7, 2006, Table 5.
- 2. Potential emissions of PM, SO₂ and NO_X for SR4 and SR6 are from Title V Operating Permit TV-OP-053, March 9, 2007, Table 6 and TP-0106.
- 3. Potential emissions of CO and VOC based on AP-42 emission factors (see supporting calculations).
- 4. Average hourly emissions based on actual annual emissions divided by operating hours.

GZA GeoEnvironmental, Inc. February 2014

SUPPORTING CALCULATIONS PM2.5 SAMPLE CALCULATIONS Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

Biomass	
Emissions -	
Potential	
SR4 PM2.5	

PM _{2.5} (1b/hr)	II	$\text{PM}_{2.5}\text{Emission Factor}\text{(lb/MMBTU)}$	×	Biomass Cofining (%)	×	Max Coal Combustion	×	Biomass Heat Content
1.15 lb/hr	II	0.034 lb/MMBTU	×	10%	×	22.5 tons/hr	×	15.0 MMBTU/ton
PM _{2.5} (tons/yr)	II	PM _{2.5} (lb/hr)	×	8,760 hours/yr	• •	2,000 lbs/ton		
5.03 tons/yr	II	1,15 lb/hr	×	8,760 hours/yr	11.	2,000 lbs/ton		
SR4 PM2.5 Potential Emissions - Coal	missic	ons - Coal						
PM _{2.5} (lb/hr)	II	PM Emission Limit (lb/MMBTU)	×	PM _{2.5} Fraction (%)	×	Boiler Heat Input (MMBTU/hr)		
16.65 lb/hr	II	0.10 Ib/MMBTU	×	29%	×	574 MMBTU/hr		
$PM_{2.5}$ (tons/yr)	11 "	PM _{2.5} (lb/hr)	×	8,760 hours/yr	+ +	2,000 lbs/ton		
72,91 tons/yr	II	16.65 lb/hr	×	8,760 hours/yr	4.	2,000 lbs/ton		
SR4 PM2.5 Potential Emissions - Oil	missi	ons - Oil						
PM _{2.5} (lb/hr)	П	PM Emission Limit (lb/MMBTU)	×	PM _{2.5} Fraction (%)	×	Boiler Heat Input (MMBTU/hr)		
23.58 lb/hr	II.	0.10 INMMBTU	×	41%	×	575 MMBTU/hr		
PM _{2.5} (tons/yr)	II	PM _{2,5} (1b/hr)	×	8,760 hours/yr	31:	2,000 lbs/ton		
103.26 tons/yr	II	23.58 lb/hr	×	8,760 hours/yr	4-	2,000 lbs/ton		
SR4 PM2.5 Actual Emissions - Biomass	ission	s - Biomass						
PM _{2,5} (lb/year)	II	= PM _{2.5} Emission Factor (lb/MMBTU)	×	Biomass Cofiring (tons/yr)	×	Biomass Heat Content (MMBTU/ton)		
91.80 lb/уг	II	0.034 Ib/MMBTU	×	180 tons	×	15.0 mmbtu/ton		
PM _{2.5} (lb/hr)	II	$PM_{2.5}$ (1b/yr)	* *	operating hours/yr				
0.01 lb/hr		91.80 lb/yr	•]•	7,213 hours/yr				
PM _{2.5} (ton/yr)	t)	$PM_{2.5}$ (Ib/yr)	+}+	2,000 lbs/ton	4.	2,000 lbs/ton		
0.05 tons/yr	II	91.80 lb/hr	* *	2,000 lbs/ton				

SUPPORTING CALCULATIONS
PM2.5 SAMPLE CALCULATIONS
Public Service Company of New Hampshire
Schiller Station
Portsmouth, New Hampshire

SR4 PM2.5 Actual Emissions - Coal

	2,000 lbs/ton		
	4		
Coal Heat Input (MMBTU/yr)	2,838,262 MMBTU/yr	operating hours/yr	7,213 hours/yr
×	×	- -	-1-
PM _{2.5} Fraction (%)	29%	2,000 lbs/ton	2,000 lbs/ton
×	×	×	×
PM Emission Factor (lb/MMBTU) x	0.02 lb/MMBTU	PM _{2.5} (tons/yr)	8.23 tons/yr
II	II	II	II
PM _{2.5} (tons/yr)	8.23 tons/yr	PM _{2.5} (lb/hr)	2.28 lb/hr

SR4 combusted 114,928 tons of coal in 2010 with an average heat content of 12,348 BTU/lb

SR4 PM2.5 Actual Emissions - Oil

Efficiency (%)		%					
x 1 - ESP Control Efficiency (%)		%8%					
×		×					
Fuel Use (1000 gal/yr)		300.594 Mgal/yr		operating hours/yr	7,213 hours/yr	/ weight	3.22
×		×		•[•	* *	ent of 1.0% by	+
PM _{2.5} Fraction (%)	2,000 lbs/ton	41%	2,000 lbs/ton	2,000 lbs/ton	2,000 lbs/ton	1 2010 with an sulfur contr	Weight % Sulfur
×	4	×	•	×	×	fuel oil ii	×
= PM Emission Factor (Ib/MMBTU)		12.41 lb/1000 gal		PM _{2.5} (tons/yr)	0.006 tons/yr	SR4 combusted 300,595 gallons of #6 fuel oil in 2010 with an sulfur content of 1.0% by weight ESP Control efficiency is 99.2%	9.19
II		11		Ш	li	δя	II.
PM _{2.5} (tons/yr)		0.006 tons/yr		PM _{2.5} (lb/hr)	0.002 lb/hr		-42 PM (Ib/1000 gal)

3.22	3.22
+	+
Weight % Sulfur	1.0
×	×
91.6	9.19
AP-42 PM (1b/1000 gal) =	12.41 lb/1000 gal

Ph: 800-992-0209

348 Circuit Street Hanover, MA 02339 781-829-6501

www.sturtevantinc.com Fax: 781-829-6515

strument:

MALVERN MASTERSIZER 2000

Particle Size Analysis Report

Machine Tested:

Evergreen Power Trona Sample. ECP-1000 Lbs/Hr, Bag Catch

Measured:

Friday, April 01, 2011 11:43:18 AM

Customer / Clyde Bergemann

Particle Name:

Trona

Measured by: B. MacNeil Record No:

Sample bulk lot ref:

Result Source:

Measurement

Particle RI:

0.000

Accessory Name:

Scirocco 2000

Obscuration:

4.45 %

Absorption:

0

Analysis model:

General purpose

Residual: 2.857

Dispersant Name:

Dry dispersion

Size range:

0.020 to 2000.000 um

Weighted Residual:

0.150 %

Dispersant RI:

1.000

Result Emulation:

Off

Result units:

Volume

Concentration:

0.0006 %Vol Vol. Weighted Mean D[4,3]:

15.808 um 1.1

Specific Surface Area: Surface Weighted Mean D[3,2]:

1.61

m²/g

Span: 2.959

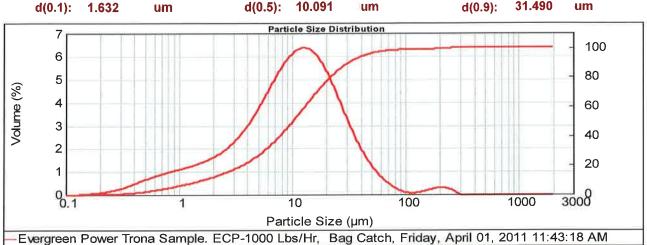
um

31.490

3.729

um

d(0.1):


1.632

um

d(0.5): 10.091

Uniformity:

d(0.9):

Size (µm)	Vol Under %	Size (um)	Vol Under %	Size (µm)	Vol Under %		Size (µm)	Vol Under %	Size (µm)	Vol Under %	ı
0.010	0.00	0.182	0.06	3.311	18,58		60.256	97.54	1096.478	100.00	
0.011	0.00	0.209	0.13	3.802	20.98		69.183	98,11	1258,925	100.00	
0.013	0.00	0.240	0.24	4.365	23.73		79.433	98,47	1445.440	100.00	
0.015	0.00	0.275	0.40	5.012	26.89		91.201	98.67	1659.587	100.00	
0.017	0.00	0,316	0.62	5.754	30.52		104.713	98.77	1905.461	100.00	
0.020	0.00	0,363	0.91	6.607	34.62		120.226	98.84	2187.762	100.00	
0.023	0.00	0.417	1.31	7.586	39.21	V.	138.038	98.92	2511.886	100.00	
0.026	0.00	0.479	1,82	8.710	44.24		158,489	99.07	2884.032	100.00	
0.030	0.00	0.550	2.42	10.000	49.63		181.970	99.29	3311.311	100.00	
0.035	0.00	0.631	3.12	11,482	55.28		208.930	99.56	3801.894	100.00	
0.040	0.00	0.724	3.90	13,183	61.04		239,883	99.81	4365,158	100.00	
0.046	0.00	0.832	4.76	15.136	66.74		275.423	99.99	5011.872	100.00	
0.052	0.00	0.955	5.69	17.378	72.22		316.228	100.00	5754.399	100.00	
0,060	0.00	1.096	6,69	19.953	77.31		363,078	100.00	6606.934	100.00	
0.069	0.00	1.259	7.76	22.909	81.87		416.869	100.00	7585.776	100.00	
0.079	0.00	1.445	8.91	26.303	85.82		478.630	100.00	8709.636	100.00	
0.091	0.00	1.660	10.16	30,200	89.13		549,541	100.00	10000.000	100.00	
0.105	0.00	1.905	11.51	34.674	91.80		630.957	100.00			
0.120	0.00	2.188	12.99	39.811	93.90		724.436	100.00			
0.138	0.00	2.512	14.64	45.709	95.50		831.764	100.00			
0.158	0.02	2.884	16.49	52.481	96.69		954.993	100.00			

The above data is to indicate the effectiveness of Sturtevant equipment. Due to the differences in particle size analysis technology, it is recommended that this data be confirmed using your specific method of analysis.

Operator Notes:

2 Bar pressure.

Ph: 800-992-0209

348 Circuit Street Hanover, MA 02339 781-829-6501

www.sturtevantinc.com Fax: 781-829-6515

strument:

MALVERN MASTERSIZER 2000

Particle Size Analysis Report

Machine Tested:

Evergreen Power Trona Sample. ECP-3000 Lbs/Hr, Bag Catch

Measured:

Friday, April 01, 2011 11:47:02 AM

Customer /

Clyde Bergemann

Trona B. MacNeil

Record No:

Sample bulk lot ref:

Result Source:

Measurement

Particle RI:

Particle Name:

Measured by:

0.000

Accessory Name:

Scirocco 2000

2000.000

um

um

Obscuration:

4.25 %

Absorption:

0

Analysis model:

General purpose

Residual: 3.919 Weighted Residual:

0.179 %

Dispersant Name: Dispersant RI:

Dry dispersion 1.000

Result Emulation:

0.020 to Off

Result units:

Volume

Concentration:

0.0005 %Vol Vol. Weighted Mean D[4,3]:

Size range:

14.904

Specific Surface Area: Surface Weighted Mean D[3,2]:

1.76

um

m²/g

Span :

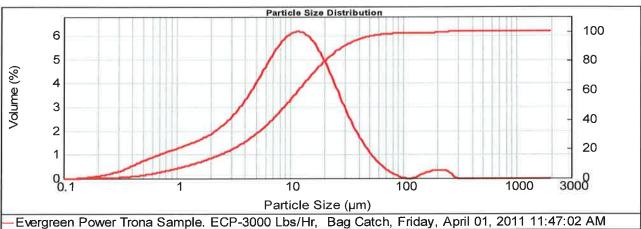
3.068

Uniformity:

1.16

um

d(0.1):


um

d(0.5): 9.170

um

d(0.9): 29.570 3.409

1.431

Size (µm)	Vol Under %	Size (µm)	Vol Under %		Size (µm)	Vol Under %	1	Size (µm)	Vol Under %	Size (µm)	Vol Under %
0.010	0.00	0.182	0.06		3,311	21.12		60.256	97.86	1096.478	100.00
0.011	0.00	0.209	0.14		3.802	23.76		69.183	98.32	1258.925	100.00
0.013	0.00	0.240	0.27		4.365	26.76		79.433	98.59	1445.440	100.00
0.015	0.00	0.275	0.44		5.012	30.15		91.201	98.73	1659.587	100.00
0.017	0.00	0,316	0.68		5.754	33.98		104,713	98.75	1905.461	100.00
0.020	0.00	0.363	1.01		6.607	38.25		120.226	98.75	2187.762	100.00
0.023	0.00	0.417	1.45		7.586	42.95		138.038	98.78	2511.886	100.00
0.026	0.00	0.479	2.02		8.710	48.03		158,489	98.95	2884.032	100.00
0.030	0.00	0.550	2.70		10.000	53.39		181.970	99.19	3311.311	100.00
0.035	0.00	0.631	3.48		11.482	58.91		208.930	99.49	3801.894	100.00
0.040	0.00	0.724	4.36		13.183	64.46		239.883	99.79	4365.158	100.00
0.046	0.00	0.832	5.33		15.136	69.87		275.423	99.99	5011.872	100.00
0.052	0.00	0,955	6.39		17.378	75.00		316.228	100.00	5754.399	100.00
0.060	0.00	1.096	7.54		19,953	79.70		363,078	100.00	6606,934	100.00
0.069	0.00	1.259	8.77		22.909	83.87		416.869	100.00	7585.776	100.00
0.079	0.00	1.445	10.10		26,303	87.44		478.630	100.00	8709.636	100.00
0.091	0.00	1.660	11.53		30.200	90.41		549.541	100.00	10000.000	100.00
0.105	0.00	1.905	13.09		34.674	92.80		630.957	100.00		
0.120	0.00	2.188	14.80		39.811	94.67		724.436	100.00		
0.138	0.00	2.512	16.68		45.709	96.09		831.764	100.00		
0.158	0.02	2.884	18.77	ı	52.481	97.13		954.993	100.00		

The above data is to indicate the effectiveness of Sturtevant equipment. Due to the differences in particle size analysis technology, it is recommended that this data be confirmed using your specific method of analysis.

Operator Notes:

2 Bar pressure.

Material Safety Data Sheet

NFPA: H=1 F=0 I=0 S= None Chemical: Sodium Sesquicarbonate

HMIS: H=1 F=0 R=0 PPE= Supplied by user;

dependent on conditions

MSDS Number:

Trona-1103

Effective Date:

11 November 2003

Solvay Chemicals, Inc. Regulatory Affairs Department Issued by:

Not valid three years after effective date or after issuance of superseding MSDS, whichever is earlier. French or Spanish translations of this MSDS may be available. Check www.solvaychemicals.us or call Solvay Chemicals, Inc. to verify the latest version or translation availability.

Material Safety Data Sheets contain country specific regulatory information; therefore, the MSDS's provided are for use only by customers of Solvay Chemicals, Inc. in North America. If you are located in a country other than Canada, Mexico, or the United States, please contact the Solvay Group company in your country for MSDS information applicable to your location.

Company and Product Identification

1.1 Product Name: T-200®

Chemical Name:

Sodium sesquicarbonate

Synonyms:

Mechanically refined trona.

Chemical Formula:

Na₂CO₃• NaHCO₃• 2H₂O

Molecular Weight:

226

CAS Number:

533-96-0

EINECS Number:

208-580-9

Grades/Trade Names: T-200®

1.2 Recommended Uses: Consult supplier

1.3 Supplier:

Solvay Chemicals, Inc.

PO BOX 27328 Houston, TX 77227-7328

3333 Richmond Ave. Houston, Texas 77098

1.4 Emergency Telephone Numbers

Emergencies (USA): 1-800-424-9300 (CHEMTREC®)

Transportation Emergencies (INTERNATIONAL/MARITIME): 1-703-527-3887 (CHEMTREC®)

Transportation Emergencies (CANADA): 1-613-996-6666 (CANUTEC)

Transportation Emergencies (MEXICO-SETIQ): 01-800-00-214-00 (MEX. REPUBLIC)

525-559-1588 (Mexico City and

metro area))

Solvay Chemicals

Material Safety Data Sheet

2. Composition/Information on Ingredients

INGREDIENTS	FORMULA	WT. PERCENT	CAS#	EINECS #
Sodium sesquicarbonate	Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O	98	533-96-0	208-580-9
Silica, crystalline quartz	SiO ₂	<0.4	14808-60-7	238-878-4
H ₂ 0 insolubles	Not Applicable	2	Not Applicable	Not Applicable

3. Hazards Identification

Emergency Overview: Product reacts with acids to produce carbon dioxide and heat.

- 3.1 Route of Entry: Inhalation: Yes Skin: Yes Ingestion: Yes
- **3.2** Potential Effects of exposure: Sodium Sesquicarbonate is an alkaline product and may irritate digestive mucous membranes, eyes and healthy skin.

Inhalation: May be irritating to the nose, throat, and respiratory tract. Repeated exposure may cause nosebleeds.

Eyes: May cause irritation, severe watering and redness.

Skin contact: May cause skin irritation, seen as redness and swelling. In the presence of moisture or sweat, irritation may become more severe leading to rash.

Ingestion: May cause gastrointestinal irritation including nausea, vomiting, abdominal cramps and diarrhea. May cause irritation of the mouth and throat.

Carcinogenicity: See section 11.3

4. First-Aid Measures

General Recommendations: Treat for eye, skin and respiratory tract irritation.

4.1 Inhalation: Remove subject to a dust free environment and blow nose. If breathing is difficult or has stopped, administer artificial respiration. If any irritation is present, seek medical attention.

Eyes: In cases of splashing of concentrated solution in the eyes and face, treat the eyes first, and then continue first aid as defined under "contact with the skin." Rinse the eyes with running water for 15 minutes, maintaining the eyelids wide open to eliminate the product. Protect the eyes from strong light. Consult a physician or ophthalmologist in all cases.

Skin:

- Remove contaminated shoes, socks and clothing, under a shower if necessary; wash the affected skin with luke warm water.
- Keep warm (blanket), provide clean clothes.
- Consult with a physician in all cases.
- Dry carefully.
- In case of persistant pain or reddening, consult physician.

Ingestion: Do not induce vomiting. Remove any evidence of the product from the person's mouth.

Material Safety Data Sheet

If the subject is completely conscious: Give 8-12 ounces of water, SEEK MEDICAL ATTENTION.

If the subject is unconscious:

NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSIOUS PERSON.

5. Fire-Fighting Measures

- 5.1 Flash point: Non combustible.
- **5.2** Auto-ignition Temperature: Not Applicable.
- **5.3** Flammability Limits: Not Applicable.
- 5.4 Unusual Fire and Explosion Hazards: Non-combustible and non-explosive.
- **5.5 Common Extinguishing Methods:** In case of fire near stored product, all means of extinguishing are acceptable.

6. Accidental Release Measures

- 6.1 Precautions: Avoid excessive dust.
- **6.2** Cleanup methods: Clean up uncontaminated material and recycle into process. Place unusable material into a closed, labeled container compatible with the product.
- **6.3** Precautions for protection of the environment: Sweep up residual material. Do not flush to drain. Prevent material from entering public sewer systems or any waterways. Dispose of waste in accordance with applicable federal, state, and local environmental laws and regulations.

7. Handling and Storage

7.1 Handling:

- Avoid prolonged or repeated contact with the skin or eyes.
- Do not wear contact lenses without proper eye protection when using this product.
- Avoid prolonged or repeated breathing of dusts.
- Use vacuum or wet mop to clean up dust.
- **7.2 Storage:** Keep in a closed, properly labeled container in a dry area away from acids. Protect from physical damage.
- 7.3 Specific Uses: See Section 1.2

7.4 Packaging:

- Bulk rail car and truck
- Paper+PE
- Woven plastic material + PE coating
- Woven plastic material + PE.

Material Safety Data Sheet

8. Exposure Controls/Personal Protection

8.1 Exposure Limit Values

TLV® ACGIH®-USA (2002)

OSHA PEL

Sodium Sesquicarbonate

Nuisance Dust-5 mg/m³ (Respirable Fraction), 15 mg/m³ (Total Dust).

Silica, Crystalline Quartz

0.05 mg/m³ for 8 hourTWA

10 mg/m³ / % Silica + 2

ACGIH® and TLV® are registered trademarks of the American Conference of Governmental Industrial Hygienists.

- 8.2 Exposure Controls:
- 8.2.1 Occupational Exposure Controls:
- **8.2.1.1 Ventilation:** In places with the possibility for creating excessive dust in excess of exposure limits, ventilation should be provided.
- **8.2.1.2 Respiratory protection:** In case of significant or accidental dust emissions, a NIOSH/MSHA approved dust respirator should be worn.
- 8.2.1.3 Hand protection: Cotton gloves are adequate for routine handling of dry product.
- **8.2.1.4 Eye protection:** In cases of significant dust, dust proof goggles are recommended.
- **8.3 Other precautions:** Protective clothing in dusty areas. An eyewash and safety shower should be nearby and ready for use. Use good hygiene practices when handling this product including changing work clothes after use. Do not eat, drink or smoke in areas where this material is handled.

9. Physical and Chemical Properties

9.1 Appearance: Powder

Color: White to off white

Odor: Odorless

9.2 Important Health, Safety and Environmental information:

pH: 10.1 (1-% solution).

Change of state:

Melting point: Decomposes at >70°C (158°F).

Boiling point: Not applicable.

Decompositon Temperature: Beginning at 70°C (158°F).

Flash Point: Not Applicable

Flammability: Not Applicable

(solid, gas)

Explosive Properties: Not Applicable

T-200®

Trona: T-200®

Material Safety Data Sheet

Oxidizing Properties: Not Applicable Vapor Pressure: Not Applicable

Relative Density: Specific gravity (H₂O=1): 2.11

Solubility:

Water: 20% maximum by weight in water @ 30°C (86°F).

Fat: Not Applicable.

Partition coefficient: P (n-octanol/water): Not applicable.

Viscosity: Not listed

Vapor Density (air=1): Not Applicable. Evaporation Rate: Not Applicable.

9.3 Other Information:

Bulk Density: 49 lbs./ft3 (780 kg/m3)

10. Stability and Reactivity

Stability: Stable at ambient temperature and atmospheric pressure.

10.1 Conditions to avoid:

- · Protect from moisture
- Mixing of acid, oxidizing agents and sodium sesquicarbonate solutions could cause CO₂ evolution and may cause severe splattering.
- 10.2 Materials and substances to avoid: Sodium sesquicarbonate mixed with lime dust in the presence of moisture will form caustic soda, which can cause serious burns. When heated, may react with Aluminum (Al). Reacts with acids and releases large volumes of CO₂ gas and heat.
- **10.3** Hazardous decomposition products: Carbon dioxide (CO₂) is evolved when mixed with acids and oxidizing agents.
- 10.4 Hazardous Polymerization: None.
- 10.5 Other information: None.

11. Toxicological Information

11.1 Acute toxicity:

Inhalation: LC₅₀ 2300 mg/m³/2h(sodium carbonate) species: rat.

Oral: LD_{50} 4090 mg/kg (sodium carbonate) species: rat. **Dermal:** LD_{50} , rabbit, >2,000 mg/kg (sodium carbonate)

11.2/11.3 Chronic toxicity/ Carcinogenic Designation: This product contains less than 0.4% Silica, crystalline quartz. Silica, crystalline quartz at greater than 1% has been shown to cause silicosis, a progressive lung disease. Silica is a suspected carcinogen.

MSDS No. T200-1103 Revised 11-1-03 Copyright 2003, Solvay Chemicals, Inc. All Rights Reserved. www.solvaychemicals.us 1.800.765.8292

Material Safety Data Sheet

12. Ecological Information

12.1 Acute ecotoxicity:

SODIUM BICARBONATE: **Crustaceans**, Daphnia magna, LC_{50} , 48 hours, 2350 mg/l. **Fishes**, Gambusia affinis, LC_{50} , 96 hours, 7550 mg/l.

SODIUM CARBONATE: **Crustaceans**, Daphnia sp., LC_{50} , 48 hours, from 115 to 150 mg/l. **Fishes**, various species, LC_{50} , 96 hours, from 30 to 1,200 mg/l.

- 12.2 Chronic ecotoxicity: None listed.
- 12.3 Mobility: Water-Considerable solubility and motility.

12.4 Degradation

Abiotic:

- Water, hydrolysis. Degradations products: Carbonate (pH.10/bicarbonate (pH 6-10)/carbonic acid/carbon dioxide (pH<6)
- Soil-Result: Hydrolysis as a function of pH.

Biotic: Not Applicable.

- 12.5 Potential for bioaccumulation: Not Applicable.
- **12.6 Other adverse effects /Comments:** Observed effects are related to alkaline properties of product. Product is not significantly hazardous for the environment.

13. Disposal Considerations

- **13.1 Waste treatment:** T-200 is not a listed hazardous waste under 40 CFR 261. However, state and local regulations for waste disposal may be more restrictive. Spilled product should be disposed of in an EPA approved disposal facility in accordance with applicable national, state and local environmental laws and regulations.
- **13.2 Packaging treatment:** To avoid treatments, use dedicated containers where possible. Rinse the empty containers and treat the effluent in the same way as waste. Consult current federal, state and local regulations regarding the proper disposal of emptied containers.
- 13.3 RCRA Hazardous Waste: Not Listed.

14. Transport Information

Mode	DOT	IMDG	IATA
UN Number	Not a regulated	Not a regulated	Not a regulated
	hazardous material	hazardous material	hazardous material
Other	It is recommended that E	RG guide # 111 be used for all no	n DOT regulated material.
STCC #:	28-123-87		

Material Safety Data Sheet

15. Regulatory Information

National Regulations (US)

TSCA Inventory 8(b): Yes

SARA Title III Sec. 302/303 Extremely Hazardous Substances (40 CFR355): No

SARA Title III Sec. 311/312 (40 CFR 370:

Hazard Category:

Acute and Chronic health hazard

Threshold planning quantity - 10,000 lbs

SARA Title III Sec. 313 Toxic Chemical Emissions Reporting (40 CFR 372): No

CERCLA Hazardous Substance (40CFR Part 302)

Listed: No

Unlisted Substance: No

State Component Listing: None identified

National Regulations (Canada)

Canadian DSL Registration: Yes

WHMIS Classification: Not Applicable

This product has been classified in accordance with the hazard criteria of the *Controlled Products Regulations* and the MSDS contains all the information required by the *Controlled Products Regulations*.

Labeling according to Directive 1999/45/EC.

Name of dangerous products-sodium sesquicarbonate

Symbols Xi Irritant

Phrases R 36 Irritating to eyes

16. Other Information

16.1 Ratings:

NFPA (NATIONAL FIRE PROTECTION ASSOCIATION)

Health = 1 Fire = 0 Instability = 0 Special = none

HMIS (HAZARDOUS MATERIAL INFORMATION SYSTEM)

Health = 1 Fire = 0 Reactivity = 0 PPE = Supplied by User; dependent on local conditions

16.2 Other Information:

The previous information is based upon our current knowledge and experience of our product and is not exhaustive. It applies to the product as defined by the specifications. In case of combinations or mixtures, one must confirm that no new hazards are likely to exist. In any case, the user is not exempt from observing all legal, administrative and regulatory procedures relating to the product, personal hygiene, and integrity of the work environment. (Unless noted to the contrary, the technical information applies only to pure product).

Material Safety Data Sheet

To our actual knowledge, the information contained herein is accurate as of the date of this document. However, neither Solvay Chemicals, Inc. nor any of its affiliates makes any warranty, express or implied, or accepts any liability in connection with this information or its use. This information is for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right. The user alone must finally determine suitability of any information or material for any contemplated use, the manner of use and whether any patents are infringed. This information gives typical properties only and is not to be used for specification purposes.

TRADEMARKS: All trade names products referenced herein are either trademarks or registered trademarks of Solvay Chemicals, Inc. or affiliate unless otherwise indicated.

16.3 Reason for revision:

Supersedes edition: Solvay Minerals MSDS #015 dated 4/9/03. Purpose of revision: Change Company name and MSDS format.

Material Safety Data Sheet U.S. Department of Labor Occupational Safety and Health Administration This form is consistent with ANSI standard for preparation of MSDS's in accordance with OSHA's Hazard Communication Standard, 29 CFR 1910,1200.

Product Type: FLUEPAC MC PLUS	
Product Code: 2169	Profile No: 51

SECTION I

Company Identification (USA	4)	Calgon Carbon C	Calgon Carbon Corporation P.O. Box 717			
		Pittsburgh, PA 15	230-0717			
Telephone Number(s)		Information	412-787-6700			
		Emergency	412-787-6700			
Company Identification		Chemviron Carbo	n			
(Europe)		Zoning Industriel d B-7181 Feluy, Belg				
Telephone Number(s)		Information	32 64 51 18 1 1			
		Emergency	32 64 51 18 11			
Date Prepared: November 3, 2008	Sigr	nature of Preparer: (optional)				

SECTION II - COMPOSITION /INFORMATION ON INGREDIENTS

Nonhazardous components are listed at 3% or greater; abute hazards are listed when present at 1% or greater and chronic hazards are listed when present at 0.01% or greater. This is not intended to be a complete compositional disclosure.

ngredient / Component	CAS No	% by Wt
Steam Activated Carbon	7440-44-0	> 85
Proprietary component	proprietary	< 15

Page 1 of S

SECTION III - HAZARD(S) IDENTIFICATION

Emergency Ove skin, eyes, and respi			n! May be harmful i	f swallowed or inhaled. May cause imitation to
OSHA Regulator	ry Status	S:		
HMIS Ratings:	Health		2	4 = Extreme/Severe
(NFPA)	Flammability Reactivity		0	3 = High/Serious 2 = Moderate
			1	t = Slight
	Special			0 = Minimum w = Water Reactive ox = oxidizer
Protective Equipment See		See	ee Section VIII	
Health Effects: See		See	e Section IV	
Environmental Effects: See		See	Section XII	

SECTION IV - FIRST-AID MEASURES

Route of exposure	
Eyes	Moderately irritating to the eyes
Inhalation	Moderately imitating to respiratory tract
Skin	Moderately irritating to the skin
Ingestion	Ingestion may cause gastrointestinal irritation and diarrhea
Signs/Symptoms of Exposure	Irritant to eyes, skin and respiratory track. Long term ingestion may cause depression, psychoses, irritability, and headache.
Emergency and First Aid Procedures	Rinse eyes with water. Supply fresh air. Wash skin with soap and water. Seek medical advice.
Medical Conditions Generally Aggravated by Exposure	Repeated exposure may cause irritation or dermatitis.

SECTION V - FIRE FIGHTING MEASURES

Suitable Extinguishing Media	Use an extinguishing media suitable for surrounding fire	
Unsuitable Extinguishing Media	Not known	
Specific Hazards	Not available	
Protective Equipment and Procedures	Wear self-contained breathing respirator. Wear full protective suit	

SECTION VI - ACCIDENTAL RELEASE MEASURES

Personal Precautions	Wear protective equipment, keep unnecessary personnel away, ventilate area of spill
Environmental Precautions	Avoid dispersal of spilled material, runoff and contact with soil, waterways, drains and sewers.
Containment & Clean-up	Vacuum or scoop up spilled material and place in appropriate container for disposal by incineration. Avoid creating dusty
Other information	

SECTION VII - HANDLING AND STORAGE

	Avoid contact with eyes and skin. Protect containers from physical damage.
Storage	Keep container closed and store in a cool, dry ventilated area. There are no special precautions.

SECTION VIII - EXPOSURE CONTROLS/PERSONAL PROTECTION

Component	OSHA PEL	ACGIH TLV	Other limits
Activated Carbon	Non Defined	Non Defined	
Proprietary Component	Non Defined	Non Defined	
Exposure Guidelines	Not defined		
Engineering Controls	No special ventilation requirements. Good general ventilation should be adequate		
Personal Protective Equipment	The usual precautionary measures for handling chemicals should be followed, i.e. safety glasses w/side shields, long sleeve lab coat, dust respirator if dusty, etc.		
General Hygiene	The usual precautionary measures for handling chemicals should be follower i.e. Keep away from food and beverage, remove contaminated dothing immediately, wash hands before breaks or eating, avoid contact with eyes as skin, etc.		

SECTION IX - PHYSICAL AND CHEMICAL PROPERTIES

Boiling Point	NA	Melting Point	NA.
Vapor Pressure (mm Hg.)	0	Evaporation Rate	NA
Vapor Density (AIR = 1)	solid	Flash Point	NA
Specific Gravity	0.4 - D.8	UEL	NA
		LEL	NA
Flammability Limits	Ignition Ten	perature > 220° C	
Odor	None		
Solubility in Water	Soluble impregnant		
Appearance	Black granufar material		

SECTION X - STABILITY AND REACTIVITY

CTADILITY	UNSTABLE YES		CONDITIONS TO AVOID:
STABILITY			None
HAZARDOUS	MAY OCCUR		CONDITIONS TO AVOID:
REACTION	WILL NOT OCCUR	YES	None
Incompatible Materials			Avoid oxidizing materials and acids
Hazardous Decomposition Products			Product contains halogenated compounds.

SECTION XI - TOXICOLOGICAL INFORMATION

Acute Effects					
Toxicity Studies	Oral LD ₅₀	For 100% proprietary component (LD 50 Rat) = 3120 mg/kg			
Toxicity Studies	Dermal LDs	Not determined			
Inhalation:	See section IV				
Ingestion:	See section IV				
Eye Irritation:	See section IV				
Skin Irritation:	See section IV				
Sensitization:	None determined				
Target Organ (s)	or System	Central Nervous System			
Signs and symp	toms of Expos	sure See Section IV			
Chronic Effects	S				
Carcinogenicity: No					
		fetermined			
Reproductive Effects: None dete		termined			
Developmental Factors: None dete		e determined			

SECTION XII - ECOLOGICAL INFORMATION

Ecotoxicity:	No known significant effects or critical hazards.
Persistence/degradability:	The product and its degradation products have not been determined to be toxic
Bioaccumulation/Accumulation:	Not determined
Mobility in Environmental Media:	Not determined
Other Adverse Effects:	

BECTION XIII - DISPOSAL CONSIDERATIONS

Sweep, shovel or vacuum carbon into a closed container. Avoid dispersal and contact with soil, waterways, drains and sewers.

Disposal should be in accordance with applicable regional, national and local laws and regulations. Local regulations may be more stringent than regional or national requirements.

SECTION XIV - TRANSPORT INFORMATION

The information as presented below only applies to the material as shipped. The identification based on characteristic(s) or listing may not apply if the material has been used or otherwise contaminated. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated to determine the proper waste identification and disposal methods in compliance with applicable regulations.

Land	DOT Regulations	Proper Shipping Description:	FLUEPAC MC Plus (Steam Activated Carbon)	
	Canadian WHMIS	Hazard Class:		
		UN/NA:		
		Information reported	for product/size:	
Water	IMO / IMDG	Proper Shipping	FLUEPAC MC Plus	
.,	SHIVE STATES AND	Description:	(Steam Activated Carbon)	
		Hazard Class:		
		UN/NA:		
		Information reported for product/size:		
Air	IACO / IATA	Proper Shipping	FLUEPAC MC Plus	
		Description:	(Steam Activated Carbon)	
		Hazard Class:		
		UN/NA:		
		Information reported for product/size:		

This product has been tested according to the United Nations Transport of Dangerous Goods test protocol for spontaneously combustible materials. It has been specifically determined that this product does not meet the definition of a self heating substance or any hazard class, and therefore is not a hazardous material and not regulated.

SECTION XV - REGULATORY INFORMATION

No		
No		
Nα		
No		
tion	WHMIS	No
tion	DSL#	No
		e classification, packaging, and labeling of ions.
R36 Irritating to eyes, R37 Irritating to respiratory system, R38 Irritating to skin,		
S22 Do not breath dust, S25 Avoid contact with eyes, S36 Wear suitable protective clothing		
	No No No Ves re ces an R3ô Irri skin, S22 Do	No No No No No No No DSL # ves relating to three and preparate skin, S22 Do not breath d

SECTION XVI - OTHER INFORMATION

The information contained in this document applies to this specific material as supplied. It may not be valid for this material if it is used in combination with any other materials. It is the user's responsibility to satisfy oneself as to the suitability and completeness of this information for their own particular use.

While the information and recommendations set forth herein are believed to be accurate as of the date hereof, Calgon Carbon Corporation makes no warranty with respect to same and disclaims all liability for reliance there on,

References:

NA

not applicable

Legend:

ACGIH

- American Conference of Governmental Industrial Hygienists

ANSI - American National Standards Institute

- Ceiling (limit value)

CAS#

 Chemical Abstracts Service Registry Number
 Comprehensive Environmental Response, Compensation, and Liability Act
 Canadian Environmental Protection Act CERCLA

CEPA

CFR - Code of Federal Regulations DOT - Department of Transportation DSL - Domestic Substances List

- European Inventory of Existing Commercial Chemical Substances EINECS

ERAP - Emergency Response Assistance Plan

Page 7 of 8

IATA - International Air Transportation Association International Agency for Research on Cancer
 International Civil Aviation Organization IARC ICAO IDLH - Immediately Dangerous to Life and Health IMO - International Maritime Organization IMDG - International Maritime Dangerous Goods

- The concentration of material in air expected to kill 50% of a group of test animals LC50

- Lethal Dose expected to kill 50% of a group of test animals LD50

NFPA - National Fire Protection Association

NIOSH - National Institute for Occupational Safety and Health

NTP - National Toxicology Program

- Occupational Safety and Health Association OSHA PEL

- Permissible Exposure Limit

RCRA - Resource conservation and Recovery Act

RQ

 Reportable Quantity
 Superfund Amendments and Reauthorization Act
 Short Term Exposure Limit SARA

STEL

- Transportation of Dangerous Goods Act/Regulation TOG

TLV - Threshold Limit Value TSCA - Toxic Substances Control Act

AWT

- Time Weighted Average - Workplace Hazardous Material Information System WHMIS

*** END OF MATERIAL SAFETY DATA SHEET ***

SAFETY DATA SHEET

North American Version

SOLVAIR® SELECT S300 & SELECT 350

1. PRODUCT AND COMPANY IDENTIFICATION

1.1. Identification of the substance or preparation.

SOLVAIR® SELECT \$300 & SELECT 350 Product name

Product grade(s) : SOLVair® Select 300

SOLVair® Select 350

Molecular Weight : 84.02 g/mol

1.2. Use of the Substance/Preparation

Recommended use : - Purifying flue gas

1.3. Company/Undertaking Identification

: SOLVAY CHEMICALS, INC. Address

3333 RICHMOND AVENUE HOUSTON TX 77098-3099

United States

1.4. Emergency and contact telephone numbers

Emergency telephone : 1 (800) 424-9300 CHEMTREC ⊚ (USA & Canada)

01-800-00-214-00 (MEX. REPUBLIC)

Contact telephone number : US: +1-800-765-8292 (Product information) (product information): US: +1-713-525-6500 (Product information)

2. HAZARDS IDENTIFICATION

2.1. Emergency Overview:

NFPA

: H= 0 F= 0 I= 0 S= None : H= 0 F= 0 R= 0 PPE = Supplied by User; dependent on local HMIS

conditions

General Information

Appearance : crystalline, powder

Colour : white Odour : odoudess

2.2. Potential Health Effects:

Inhalation

Mechanical irritation from the particulates generated by the product.

Mechanical irritation from the particulates generated by the product.

Skin contact

- Mechanical irritation from the particulates generated by the product.

N 27802 J LASÁ P 27827 USA.
Haufing date 07/57/2259 / Papert visition 1/2
Copyright 2009, BOLVAY CHEOROALE, INC.
All Rights Reserved.
Wilder Reserved. SOLVAY Chemicals

Ingestion

- Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhoea.

Other roxicity effects

See section 11: Toxicological Information.

2.3. Environmental Effects:

- See section 12: Ecological Information

3. COMPOSITION/INFORMATION ON INGREDIENTS

Sodium bicarbonate

CAS-No.

144-55-8 >= 95.0 %

Concentration

4. FIRST AID MEASURES

- 4.1. Inhalation
 - Remove to fresh air.
- 4.2. Eye contact
 - Rinse thoroughly with plenty of water, also under the eyelids.
 - If eye imitation persists, consult a specialist.
- 4.3. Skin contact
 - Wash off with plenty of water.
- 4.4. Ingestion
 - If a large amount is swallowed, get medical attention.

If victim is conscious:

- If swallowed, rinse mouth with water (only if the person is conscious).

If victim is unconscious but breathing:

not applicable

5. FIRE-FIGHTING MEASURES

- 5.1. Suitable extinguishing media
 - Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.
- 5.2. Extinguishing media which shall not be used for safety reasons
 - None.
- 5.3. Special exposure hazards in a fire
 - Not combustible.
- 6.4. Hazardous decomposition products
 - none
- 5.5. Special protective equipment for fire-fighters
 - No special precautions required.

6. ACCIDENTAL RELEASE MEASURES

- 6.1. Personal precautions
 - Refer to protective measures listed in sections 7 and 8.

P 27902 J USA.
Instanç daks (1797/2000) (Ignacia variation 1.6:
Copyright 2005, HOUSANY Call BARCALS, INC.
Alt Rights Housewood
www.biologycherricals use

6.2. Environmental precautions

- Do not flush into surface water or senitary sewer system.
- Prevent any mixture with an acid into the sewer/drain (gas formations).

6.3. Methods for cleaning up

- Sweep up and shovel into suitable containers for disposal.
- Avoid dust formation.
- Keep in properly tabelled containers.
- Keep in suitable, closed containers for disposal.
- Treat recovered material as described in the section "Disposal considerations".

7. HANDLING AND STORAGE

7.1. Handling

Keep away from Incompatible products.

7.2. Storage

- Keep in a dry place.
- Store in original container.
- Keep container closed.
- Keep away from Incompatible products.

7.3. Packaging material

- Paper + PE.
- Polvethylene
- Polypropytene
- Wowen plastic material + PE.

7.4. Other information

- Avoid dust formation.
- Refer to protective measures listed in sections 7 and 6.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1. Exposure Limit Values

Sodium bicarbonate

SAEL (Solvay Acceptable Exposure Limit) 2007

TWA = 10 mg/m3

US. ACGIH Threshold Limit Values

Remarks: none established

Particles not otherwise specified (PNOS)

US, OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910, 1000) 02 2008

Permissible exposure limit = 5 mg/m3

Remarks: respirable dust fraction, All inert or nuisance dusts, whether mineral, inorganic, or organic, not listed specifically by substance name are covered by the Particulates Not Otherwise Regulated (PNOR) limit which is the same as the inert or nuisance dust limit of Table Z-3.

US, OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) 02 2006

Permissible exposure limit = 15 mg/m3

Remarks: Total dust, All inert or nuisance dusts, whether mineral, inorganio, or organic, not listed specifically by substance name are covered by the Particulates Not Otherwise Regulated (PNOR) limit which is the same as the inert or nuisance dust limit of Table Z-3.

US, OSHA Table Z-3 (29 CFR 1910 1000), 2000.

time weighted average = 15 millions of particles per cubic foot of air

Remarks: respirable dust fraction

 US. OSHA Table Z-3 (29 CFR 1910.1000) 2000 time weighted average = 50 millions of particles per cubic foot of air Remarks: Total dust

US. OSHA Table Z-3 (29 CFR 1910.1000) 2000

time weighted average = 5 mg/m3

Remarks: respirable dust fraction

- US. OSHA Table Z-3 (29 CFR 1910.1000) 2000

time weighted average = 15 mg/m3

Remarks: Total dust

US, OSHA Table Z-1-A (29 CFR 1910,1000) 1989

time weighted average = 5 mg/m3

Remarks: respirable dust fraction

US, OSHA Table Z-1-A (29 CFR 1910,1000) 1989

time weighted average = 15 mg/m3

Remarks: Total dust

US. ACGIH Threshold Limit Values 2008

time weighted average = 10 mg/m3

Remarks: Inhalable particles.

US, Tennessee, OELs, Occupational Exposure Limits, Table Z1A 08 2008

time weighted average = 15 mg/m3

Remarks: Total dust

US, Tennessee, OELs, Occupational Exposure Limits, Table Z1A 08 2008

time weighted average = 5 mg/m3

Remarks: respirable dust fraction

ACGING and TLVS are registered trademarks of the American Conference of Governmental Industrial Hygienists.

SAEL - Solvay Acceptable Exposure Limit, Time Weighted Average for 8 hour workdays. No Specific TLV STEL (Short Term Exposure Level) has been set Excursions in exposure level may exceed 3 times the TLV TWA for no more than a total of 30 minutes during a workday and under no circumstances should they exceed 5 times the TLV TWA.

8.2. Engineering controls

- Ensure adequate ventilation.
- Provide appropriate exhaust ventilation at places where dust is formed.
- Refer to protective measures listed in sections 7 and 8.
- Apply technical measures to comply with the occupational exposure limits.

8.3. Personal protective equipment

8.3.1. Respiratory protection

- Use only respiratory protection that conforms to international/ national standards.
- Use NIOSH approved respiratory protection.

8.3.2. Hand protection

Wear suitable gloves.

8.3.3. Eye protection

- Dust proof goggles, if dusty.

8.3.4. Skin and body protection

None

8.3.5. Hygiene measures

- When using do not eat, drink or smoke.
- Wash hands before breaks and at the end of workday.
- Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

P. 278827 USA. Imming date 07/15/C00097 Peopois wirelen I.C. Copyright 0202, SOLVAY CHEMICALS, INC. At Profits Howavind www.solveychimidates un 9.1. General Information

Appearance

crystalline, powder

Colour

white

Odour

odourless

9.2. Important health safety and environmental information

Concentration: 52 g/l

Boiling point/boiling range 💢 Remarks: not applicable, Thermal decomposition

Flash point

: Remarks: not applicable

Flammability

Lower explosion limit:

Explosive properties

Remarks: The product is not flammable.

 Explosion danger: Remarks: Not explosive

Oxidizing properties

: Remarks: Non oxidizer

Vapour pressure

: Remarks: not applicable

Bulk density

: 500 - 1,200 kg/m3

32 - 75 lb/ft3

Solubility

Water

96 g/l

Temperature: 20 °C (68 °F)

Other

slightly soluble

Partition coefficient:

: Alcohol

n-octanol/water

Viscosity

: 1.2 mPa.s

Vapour density

: Remarks: not applicable

Remarks: not applicable

9.3. Other data

Melting point/range

: Remarks: not applicable, Decomposition

Auto-flammability

Remarks: The product is not flammable.

Decomposition

temperature

= > 60 °C (140 °F)

10. STABILITY AND REACTIVITY

10.1. Stability

- Stable under recommended storage conditions.

10.2. Conditions to avoid

- Keep at temperature not exceeding: 60 °C (140 °F)

10.3. Materials to avoid

P 27892 / USA housing date 07/17/2009 / Report ventor 1.0 Copyright 2005, 906/4AY CHEMICALS, INC. All Highs Reserved www.achtercharle.us

- Acids

10.4. Hazardous decomposition products

- none

11. TOXICOLOGICAL INFORMATION

Texicological data

Acute oral toxicity

LD50, rat, > 4,000 mg/kg

Acute inhalation toxicity

LC50, rat, > 4.74 mg/l

Acute dermal irritation/corrosion

LD50, Remarks: no data available

Skin imitation

- rabbit, Mild skin imitation

Eye irritation

- rabbit, Mild eye irritation

Sensitisation

- no data avallable

Chronic toxicity

no observed effect

Genetic toxicity in vitro

- Genotoxicity in vitro, Tests on bacterial or mammalian cell cultures did not show mutagenic effects.

Teratogenicity

Oral route (gavage), 10 days, Various species, 330 mg/kg. Did not show teratogenic effects in animal experiments.

Remarks

Health injuries are not known or expected under normal use.

12. ECOLOGICAL INFORMATION

12.1. Ecotoxicity effects

Acute toxicity

- Fishes, Oncorhynchus mykiss, LC50, 96 h, 7,700 mg/l Fishes, Oncorhynchus mykiss, NOEC, 96 h, 2,300 mg/l
- Fishes, Lepomis macrochirus, LC60, 96 h, 7,100 mg/l
- Fishes, Lepamis macrochirus, NOEC, 96 h, 5,200 mg/l
- Crustaceans, Daphnia magna, EC50, 48 h, 4,100 mg/l Crustaceans, Daphnia magna, NOEC, 48 h, 3,100 mg/l

12.2. Mobility

- Water, Soil/sediments
 - Remarks: Solubility
- Water, Soil/sediments Remarks: Mobility

12.3. Persistence and degradability

Abiotic degradation

P 27866 J 136A healing date 02/17/2006/ Report version 1.6 Copyright 2005, BOLVAY CHEMICALIK, INC. All Rights Reserved www.schegoteenkarls.us Water, hydrolyses

Result: acid/base equilibrium as a function of pH

Degradation products: carbonic acid/bicarbonate/carbonate

Biodegradation

 Remarks: The methods for determining the biological degradability are not applicable to inorganic substances.

12.4. Bioaccumulative potential

- Result: not applicable

12.5. Other adverse effects

no data avaitable

12.6. Remarks

- Ecological injuries are not known or expected under normal use.

13. DISPOSAL CONSIDERATIONS

13.1. Waste from residues / unused products

- Contact waste disposal services.
- If recycling is not practicable, dispose of in compliance with local regulations.
- . .
- Dilute with plenty of water.
- Neutralise with acid.
- In accordance with local and national regulations.

13.2. Packaging treatment

- To avoid treatments, as far as possible, use dedicated containers.
- . .0
- Clean container with water.
- Dispose of rinse water in accordance with local and national regulations.
- The empty and clean containers are to be reused in conformity with regulations.
- 0
- Must be incinerated in a suitable incineration plant holding a permit delivered by the competent authorities.

14. TRANSPORT INFORMATION

- Sea (IMO/IMDG)
- not regulated
- Air (ICAO/IATA)
- not regulated
- U.S. Dept of Transportation
- not regulated
- It is recommended that ERG Guide number 111 be used for all non-regulated material.
- Canadian Transportation of Dangerous Goods
- not regulated

15. REGULATORY INFORMATION

15.1. Inventory Information

Australian Inventory of Chemical Substances (AICS)		9	In compliance with inventory.
Canadian Domestic Substances List (DSL)	1	٠	In compliance with inventory.
Korean Existing Chemicals List (ECL)	8	¥.	In compliance with inventory.
EU list of existing chemical substances (EINECS)	(8)	*	In compliance with inventory.
Japanese Existing and New Chemical Substances (MITI List) (ENCS)	P	•	In compliance with inventory.
Inventory of Existing Chemical Substances (China) (IECS)	*	-	In compliance with inventory.
Philippine Inventory of Chemicals and Chemical Substances (PICCS)			
Toxic Substance Control Act list (TSCA)	ě	•	In compliance with inventory.
New Zealand Inventory (in preparation) (NZ)	:	ž.	All components on composite list considered for transfer.

15.2. Other regulations

- US. EPA Emergency Planning and Community Right-To-Know Act (EPCRA) SARA Title III Section 302 Extremely Hazardous Substance (40 CFR 355, Appendix A)
 - not regulated.
- US. EPA Emergency Planning and Community Right-To-Know Act (EPCRA) SARA Title III Section 313 Toxic Chemicals (40 CFR 372.65) - Supplier Notification Required
 - not regulated.
- US. EPA CERCLA Hazardous Substances (40 CFR 302)
 - not regulated.
- US. New Jersey Worker and Community Right-to-Know Act (New Jersey Statute Annotated Section 34:5A-5)
 not regulated.
- US, Pennsylvania Worker and Community Right-to-Know Law (34 Pa. Code Chap. 301-323)
 - not regulated.
- US. California Safe Drinking Water & Toxic Enforcement Act (Proposition 65)
 - This product does not contain any chemicals known to State of California to cause cancer, birth, or any other reproductive defects.

15.3. Classification and labelling

- Canada. Canadian Environmental Protection Act (CEPA). WHMIS Ingredient Disclosure List (Can. Gaz., Part II, Vol. 122, No. 2)
 - Not listed

Remarks: This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all the information required by the Controlled Products Regulations.

EC Label

- Not classified according to Directive 67/548/EEC.

16. OTHER INFORMATION

Ratings

NFPA (National Fire Protection Association)

Health = 0 Flammability = 0 Instability = 0 Special =None

HMIS (Hazardous Material Information System)

Health = 0 Fire = 0 Reactivity = 0 PPE : Supplied by User; dependent on local conditions

Further information

- System maintenance
- Distribute new edition to clients

Material Safety Data Sheets contain country specific regulatory information; therefore, the MSDS's provided are for use only by customers of the company mentioned in section 1 in North America. If you are located in a country other than Canada, Mexico or the United States, please contact the Solvay Group company in your country for MSDS information applicable to your location. The previous information is based upon our current knowledge and experience of our product and is not exhaustive. It applies to the product as defined by the specifications. In case of combinations or mixtures, one must confirm that no new hazards are likely to exist. In any case, the user is not exempt from observing all legal, administrative and regulatory procedures relating to the product, personal hygiene, and integrity of the work environment. (Unless noted to the contrary, the technical information applies only to pure product). To our actual knowledge, the information contained herein is accurate as of the date of this document. However, neither the company mentioned in section 1 nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this information or its use. This information is for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right. The user alone must finally determine suitability of any information or material for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. This information gives typical properties only and is not to be used for specification purposes. The company mentioned in section 1 reserves the right to make additions, deletions or modifications to the information at any time without prior notification. Trademarks and/or other products of the company mentioned in section 1 referenced herein are either trademarks or registered trademarks of the company mentioned in section 1 or its affiliates, unless otherwise indicated.

Copyright 2009, Company mentioned in Section 1. All Rights Reserved.

APPENDIX C

ENV-A 1400 COMPLIANCE DEMONSTRATION

AIR QUALITY DISPERSION MODELING REPORT DRY SORBENT INJECTION UNITS SR4 AND SR6

PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE PORTSMOUTH, NEW HAMPSHIRE

PREPARED FOR:

Public Service Company of New Hampshire Portsmouth, New Hampshire

PREPARED BY:

GZA GeoEnvironmental, Inc. Manchester, New Hampshire

February 2014 File No. 04.0029995.00

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 SUMMARY OF FINDINGS	1
2.0	FACILITY AND SITE DESCRIPTION	1
3.0	EMISSIONS DATA	2
	3.1 FACILITY EMISSIONS	2
4.0	GOOD ENGINEERING PRACTICE STACK HEIGHT ANALYSIS	2
5.0	MODELING METHODOLOGY	2
	5.1 MODELING ANALYSIS	3
	5.1.1 Model Options	3
	5.1.2 Receptors	3
	5.1.3 Meteorological Data	3
6.0	MODELING RESULTS	3
	6.1 MAXIMUM IMPACTS	3
	6.2 RESULTS SUMMARY	3
	6.3 COMPLIANCE SUMMARY	3

TABLES

TABLE C-1	CRYSTALLINE SILICA EMISSION RATES
TABLE C-2	STACK PARAMETERS
TABLE C-3	MODELING RESULTS SUMMARY
TABLE C-4	SUMMARY OF PREDICTED POLLUTANT IMPACTS

APPENDICES

APPENDIX A SUPPORTING CALCULATIONS AND DATA

1.0 INTRODUCTION

1.1 BACKGROUND

Public Service Company of New Hampshire (PSNH) Schiller Station (Schiller) is proposing to install Dry Sorbent Injection (DSI) and Activated Carbon Injection (ACI) systems on SR4 and SR6 for the purposes of complying with the emissions limitations established under 40 CFR Part 63, Subpart UUUUU, National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units. DSI/ACI systems are used to control a variety of air emissions such as sulfur dioxide (SO₂), hydrochloric acid (HCl) and mercury from the flue gas stream. PSNH is proposing to configure the DSI/ACI systems to be compatible with various sorbents including trona (trisodium hydrogendicarbonate dehydrate), sodium bicarbonate and activated carbon. Sorbents will be injected into the flue gas stream through strategically located ports upstream of the electrostatic precipitator (ESP). These sorbents are formulated to react with and/or adsorb constituents from the flue gas, the reaction products and sorbents are then removed downstream by the ESP.

Trona contains trace amounts crystalline silica as an impurity. Crystalline silica is a regulated toxic air pollutant (RTAP) under Env-A 1400, the New Hampshire Air Toxics Rule. Air quality dispersion modeling for RTAP emissions from the proposed DSI system was performed in order to evaluate compliance with the applicable Env-A 1400 RTAP Ambient Air Limits (AALs). This document constitutes the air pollution dispersion modeling report and contains the results of the analyses necessary to support the permit application for the proposed DSI/ACI systems. This report has been prepared by GZA GeoEnvironmental, Inc. (GZA) on behalf of PSNH in accordance with the *Guidance and Procedure for Performing Air Quality Impact Modeling in New Hampshire* (New Hampshire Department of Environmental Services [NHDES], July 2006).

1.2 SUMMARY OF FINDINGS

Based upon the results of the modeling analysis, RTAP emissions from the proposed DSI systems are not predicted to result in exceedances of the applicable Env-A 1400 AALs.

2.0 FACILITY AND SITE DESCRIPTION

Schiller is a wood and fossil fuel-fired electric generating station. SR4 and SR6 consist of two fossil fuel-fired electric utility steam generating units permitted to combust coal and oil, with biomass co-firing capacity of up to 10 percent (%) by weight of coal input. The facility also includes one wood and fossil fuel-fired boiler (SR5), a combustion turbine (SRCT), emergency generator, a primary and secondary coal crusher, coal and wood handling systems and various insignificant and exempt activities.

The facility is located at 400 Gosling Road in Portsmouth, New Hampshire. The Universal Transverse Mercator (UTM) coordinates for the facility are 354,770 meters easting and 4,772,950 meters northing.

3.0 EMISSIONS DATA

3.1 FACILITY EMISSIONS

RTAP emissions from the proposed DSI system at PSNH are presented in **Table C-1**. Emission rates were estimated based on the proposed maximum Trona injection rates, the Trona T-200 material safety data sheet, Trona T-100 particle size data for milled product, and previously established pollution control efficiencies for particulate matter for SR4 and SR6. Supporting documentation is provided in **Appendix A**. Modeled stack parameters are summarized in **Table C-2**.

4.0 GOOD ENGINEERING PRACTICE STACK HEIGHT ANALYSIS

Good engineering practice (GEP) stack height is the minimum stack height which would prevent the exhaust plume from becoming entrained in the turbulent wake created by nearby buildings or obstructions. For stack heights that are less than GEP, the plume may be affected by the wake region, resulting in higher ground level concentrations as the plume is more rapidly mixed to the ground. To model stacks that are less than GEP height, direction-specific building dimensions are included in the model input. These dimensions are then utilized to modify the dispersion parameters in the model to account for the building/obstruction wake effects. Stacks that are greater than GEP height will not be influenced by the wake region and, therefore, direction-specific building dimensions are not required by the model. The extent to which a stack exceeds both GEP height and 65 meters is treated as a prohibited dispersion technique and may not be accounted for in the ambient impact assessment.

A GEP stack height analysis was conducted for the PSNH facility point sources in accordance with the United States Environmental Protection Agency (USEPA) stack height regulations (40 CFR Part 51) and the USEPA revised Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) (USEPA, 1985).

The Bowman Environmental Engineering GEP BPIP-Prime software was used to calculate the GEP stack height and the wind direction-specific building dimensions for each stack/wind direction combination as required for input into the AERMOD model. The program calculates the GEP stack height and appropriate building dimensions for 36 separate wind directions (i.e., every 10 degrees).

The results of the GEP analysis indicate a GEP stack height of approximately 97.11 meters for SR4 and 101.96 meters for SR6. The actual stack heights for SR4 and SR6 are less than GEP and, therefore, direction-specific building dimensions are required in the modeling to account for downwash. These dimensions, as calculated by the BPIP-PRIME program, have been transmitted separately, along with the associated AERMOD modeling files, to NHDES via email.

5.0 MODELING METHODOLOGY

The ambient impacts resulting from RTAP emissions from the proposed DSI system were assessed using the AERMOD model in accordance with the NHDES Modeling Guidance. The methodology used in each portion of this modeling analysis is described below.

5.1 MODELING ANALYSIS

5.1.1 Model Options

A refined modeling analysis for all terrain types was performed using the AERMOD model with five years of representative meteorological data. The modeling analysis used all of the regulatory default control options incorporated in the model. Direction-specific building dimensions from the BPIP-PRIME output were provided in the model input to account for building wake downwash.

5.1.2 Receptors

A Cartesian receptor grid was used with receptors spaced at 20-meter intervals along the fence line, 100-meter intervals out to 980 meters, and 1,000-meter intervals out to 17 kilometers. Terrain height elevations were calculated using AERMAP and U.S. Geologic Survey 7.5-minute digital elevation models (NAD27) for the model domain. The model domain was selected in accordance with the AERMAP Users Guide using the domain tool incorporated into BEEST for Windows, Version 10.10 from BEE-Line Software.

5.1.3 Meteorological Data

All AERMOD refined modeling was performed using five years of surface meteorological data (2008-2012) from Portsmouth, New Hampshire and upper air data (2008-2012) from Gray, Maine. This data was supplied by NHDES.

6.0 MODELING RESULTS

6.1 MAXIMUM IMPACTS

Maximum impacts for RTAP emissions were predicted by AERMOD, with the maximum pollutant impacts located near the southeastern property boundary for the annual averaging period and the western property boundary the 24-hour averaging period.

6.2 RESULTS SUMMARY

The model output summary is presented as **Table C-3**. A summary of the maximum impacts predicted by the model are presented in **Table C-4** along with a comparison to the applicable AALs. As shown in **Table C-4**, the maximum predicted impacts for the facility are well below the applicable Env-A 1400 AALs. The AERMOD modeling files associated with this evaluation have been transmitted separately to NHDES via email.

6.3 COMPLIANCE SUMMARY

Based on the information and assumptions presented in this report and the results of the modeling analysis, RTAP emissions from the proposed DSI system are not predicted to result in exceedances of the applicable Env-A 1400 AALs.

\\GZAMAN1\Jobs\04Jobs\0029900s\04.0029995.00\Work\APP C 04.002995.00 AQDM Report 022514.doc

TABLES

February 2014 GZA GeoEnvironmental, Inc.

CRYSTALLINE SILICA EMISSION RATES TABLE C-1

Public Service Company of New Hampshire Portsmouth, New Hampshire Schiller Station

Pollutant	CAS No.	CAS No. Injection Sorbent	Precontrol Average 24-Hour Emission Rate (lb/hr/unit) ¹	Precontrol Average Annual Emission Rate (lb/hr/unit) ¹	recontrol Average Precontrol Average Post Control Average Annual Emission 24-Hour Emissions Rate (lb/hr/unit)¹ Rate (lb/hr/unit)¹	Post Control 24-Hour Emissions (lb/day/unit)²	Post Control Average Annual Emissions (lb/hr/unit)²
Silica, Crystalline-quartz – 14808-60-7 Milled Trona respirable fraction	14808-60-7	Milled Trona	21.36	21.36	0.171	4.10	0.171

Notes:

1. Emission rates for silica (respirable fraction) were calculated using the following equations:

24-Hour Emission Rate = IR x S x RF / 24

Where:

IR - Injection Rate² (lb/hr) S - Fraction of silica in trona⁴ RF - Respirable Fraction⁴ (%)

IR - Injection Rate3 (lb/hr) Where:

Annual Emission Rate = IR x S x RF / 24 / 365

S - Fraction of silica in trona⁴ RF - Respirable Fraction⁴ (%)

2. Post control emissions were based on 99.2% control efficiency for the SR4 and SR6 electrostatic precipitators.

3. Trona T-200 contains less than 0.4% silica (see MSDS).

4. A respirable fraction of 53.4% for milled Trona based on a respirable fraction cutoff of 10 microns using the particle size data provided in Appendix A. 5. The modeled emission rate was based on a maximum injection rate of 5 tons/hr or 10,000 pounds per hour for each unit as provided by PSNH.

TABLE C-2 STACK PARAMETERS

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

Stack Information	UTMC	oordinates	Base Floration (ft)	Diameter (ft)	Height (ft)	Velocity (ft/s)	Temp (*F)	Orientation
	East (m)	North (m)						
SR4	354776.91	4772946.5	26	8.00	226.0	76.26	412	Vertical
SR6	354796.03	4772920.5	26	8.00	226.0	76.26	412	Vertical

TABLE C.3 MODELING RESULTS SUMMARY

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

TABLE C-4 SUMMARY OF PREDICTED POLLUTANT IMPACTS

Public Service Company of New Hampshire Schiller Station Portsmouth, New Hampshire

			Pre Control	ontrol	Post Control		24-Hour	Annual Ambient	7 00 4 0		A A T 70/1
Pollutant	CAS No.	CAS No. Injection Sorbent	24-Hour Impact	Annual Impact	24-Hour Impact	Annual Impact	Ambient Air	4	FAII.	rercent of AAL (%)	AAL (%)
			(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	Limit (µg/m²)	(µg/m²)		24-Hour	Annual
				SR4							
Silica, Crystalline-quartz - respirable fraction	14808-60-7	Milled Trona	1.28	0.078	0.0102	0.00062	680.0	90.0	PASS	PASS 11.49%	1.03%
				SR6							
Silica, Crystalline-quartz - respirable fraction	14808-60-7	Milled Trona	1,67	0.082	0.0134	9900000	680.0	90"0	PASS	15.06%	1.10%
				Facility Total							
Silica, Crystalline-quartz - respirable fraction	14808-60-7	Milled Trona	2.84	0.159	0.023	0.0013	680.0	90'0	PASS	25.58%	2.12%

1. Impacts are based on the emission rates presented in Table 1, which are based on the maximum trona injection rates provided by PSNH.

2. Both the pre control and post control emission rates were modeled as presented in Table 1, however only the post controls were compared to the 24-hr and annual AALs as control equipment will be operated during dry sorbent injection activities.

APPENDIX A

SUPPORTING CALCULATIONS AND DATA

Ph: 800-992-0209

348 Circuit Street Hanover, MA 02339 781-829-6501

www.sturtevantinc.com Fax: 781-829-6515

strument:

MALVERN MASTERSIZER 2000

Particle Size Analysis Report

Machine Tested:

Evergreen Power Trona Sample. ECP-1000 Lbs/Hr, Bag Catch

Measured:

Friday, April 01, 2011 11:43:18 AM

Customer / Clyde Bergemann

Particle Name:

Trona

Measured by: B. MacNeil Record No:

Sample bulk lot ref:

Result Source:

Measurement

Particle RI: Absorption: 0.000

Scirocco 2000 Obscuration:

um

4.45

Dispersant Name:

0

Accessory Name: Analysis model:

General purpose 2000.000 Residual: 2.857

Weighted Residual:

0.150 %

Dispersant RI:

1.000

Result Emulation:

Size range:

0.020 to Off

Result units:

Specific Surface Area:

Volume

Concentration:

0.0006 %Vol Vol. Weighted Mean D[4,3]:

15.808 1.1

Surface Weighted Mean D[3,2]:

1.61 3.729 m²/g

Span: 2.959

Uniformity:

um

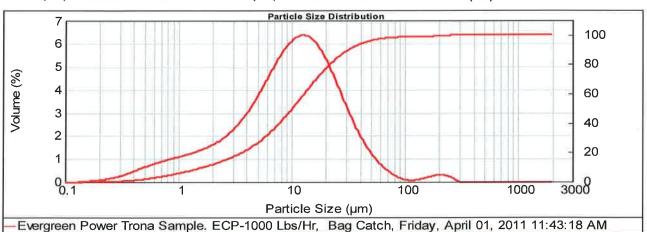
um

d(0.9):

um

d(0.1):

1.632


Dry dispersion

um

d(0.5): 10.091

31.490

um

						_				
Size (µm)	Vol Under %	Size (µm)	Vol Under %	Size (µm)	Vol Under %	ĺ	Size (µm)	Vol Under %	Size (µm)	Vol Under %
0.010	0.00	0.182	0.06	3.311	18.58		60.256	97.54	1096,478	100.00
0.011	0.00	0.209	0,13	3.802	20.98		69,183	98.11	1258,925	100.00
0.013	0.00	0.240	0.24	4.365	23.73		79.433	98.47	1445.440	100.00
0.015	0.00	0.275	0.40	5.012	26.89		91.201	98.67	1659.587	100.00
0.017	0.00	0.316	0.62	5.754	30,52		104.713	98.77	1905.461	100.00
0.020	0.00	0.363	0.91	6.607	34.62		120.226	98.84	2187.762	100.00
0.023	0.00	0.417	1.31	7.586	39.21		138.038	98.92	2511.886	100.00
0.026	0.00	0.479	1,82	8.710	44.24		158,489	99.07	2884.032	100.00
0.030	0.00	0.550	2.42	10.000	49.63		181.970	99.29	3311.311	100.00
0.035	0.00	0.631	3.12	11.482	55.28		208.930	99.56	3801.894	100.00
0.040	0.00	0.724	3.90	13.183	61.04		239,883	99.81	4365,158	100.00
0.046	0.00	0.832	4.76	15.136	66.74		275.423	99.99	5011.872	100.00
0.052	0.00	0.955	5.69	17.378	72.22		316.228	100.00	5754.399	100.00
0.060	0.00	1.096	6.69	19.953	77.31		363.078	100.00	6606.934	100.00
0.069	0.00	1.259	7.76	22.909	81.87		416.869	100.00	7585.776	100.00
0.079	0.00	1.445	8.91	26,303	85.82		478.630	100.00	8709.636	100.00
0.091	0.00	1.660	10,16	30,200	89.13		549,541	100.00	10000.000	100.00
0.105	0.00	1.905	11.51	34.674	91.80		630.957	100.00		
0.120	0.00	2.188	12.99	39.811	93.90		724.436	100.00		
0,138	0.00	2.512	14.64	45,709	95.50		831.764	100.00		
0.158	0.02	2.884	16.49	52.481	96.69		954.993	100.00		

The above data is to indicate the effectiveness of Sturtevant equipment. Due to the differences in particle size analysis technology, it is recommended that this data be confirmed using your specific method of analysis.

Operator Notes:

2 Bar pressure.

Ph: 800-992-0209

348 Circuit Street Hanover, MA 02339 781-829-6501

www.sturtevantinc.com Fax: 781-829-6515

nstrument:

MALVERN MASTERSIZER 2000

Particle Size Analysis Report

Machine Tested:

Evergreen Power Trona Sample. ECP-3000 Lbs/Hr, Bag Catch

Measured:

Friday, April 01, 2011 11:47:02 AM

Customer /

Particle Name:

Measured by:

Clyde Bergemann

Trona

B. MacNeil

Record No:

Sample bulk lot ref:

Result Source:

Measurement

Particle RI:

0.000

Accessory Name:

Scirocco 2000

2000.000

um

Obscuration:

4.25

Absorption:

0

General purpose

Residual:

Dispersant Name:

Analysis model:

Size range:

to

Weighted Residual:

3.919 0.179

Dispersant RI:

Dry dispersion

Result Emulation:

Off

Result units:

Volume

Concentration:

1.000

Vol. Weighted Mean D[4,3]:

14.904

Specific Surface Area:

1.76

m²/g

3.068 Span:

0.0005 %Vol

Uniformity:

1.16

Surface Weighted Mean D[3,2]:

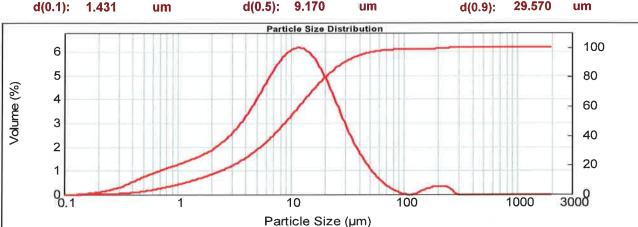
3.409

0.020

um

um

um


d(0.9):

d(0.1):

1.431

d(0.5): 9.170

29.570

Evergreen Power Trona Sample. ECP-3000 Lbs/Hr, Bag Catch, Friday, April 01, 2011 11:47:02 AM

Size (µm) Vol Under % Size (µm) Vol Under % Vol Under % Size (µm) Vol Under % Size (µm) | Vol Under % Size (µm) 0.182 0.06 3.31 21,12 1096,478 100.00 0.209 69,183 98.32 1258,925 100,00 0.011 0.00 3.802 23.76 0.14 0.013 0.00 0.240 0.27 4.365 26.76 79,433 98.59 1445.440 100.00 0.015 0.00 0.275 0.44 5.012 30.15 91.201 98.73 1659,587 100.00 1905.461 100.00 98.75 0,68 5.754 33.98 104.713 0,017 0,00 0.316 0.020 0.363 6.607 38.25 120,226 98.75 2187,762 100.00 0.00 1.01 0.023 0.417 7.586 42.95 138.038 98.78 2511.886 100.00 0.00 1.45 48.03 2884.032 100.00 0.026 0.00 0.479 2,02 8.710 158,489 98.95 0.030 0.00 0.550 2.70 10.000 53.39 181.970 99.19 3311.311 100.00 208.930 99.49 3801.894 100.00 0.035 0.00 0.631 3.48 11.482 58.91 0.040 0.00 0.724 4.36 13,183 64.46 239,883 99.79 4365, 158 100.00 99.99 5011.872 100.00 0.046 0.00 0.832 5.33 15,136 69.87 275,423 0.052 0.955 6.39 17.378 75.00 316.228 100.00 5754.399 100.00 0.00 0.060 1.096 7.54 19,953 79.70 363,078 100.00 6606.934 100.00 0.00 7585,776 100.00 22,909 100.00 0.069 0.00 1,259 8.77 83.87 416.869 26,303 87.44 478,630 100.00 8709.636 100.00 0.079 0.00 1.445 10.10 0.091 0.00 1.660 11.53 30,200 90.41 549,541 100.00 10000.000 100.00 0.105 0.00 1.905 13.09 34.674 92.80 630.957 100.00 100.00 39.811 724,436 0.120 0.00 2.188 14.80 94.67 0,138 2.512 16.68 45,709 96.09 831.764 100.00 0.00

2.884 18.77 52.481 97.13 954.993 100.00 The above data is to indicate the effectiveness of Sturtevant equipment. Due to the differences in particle size analysis technology, it is recommended that this data be confirmed using your specific method of analysis.

Operator Notes:

2 Bar pressure.

Material Safety Data Sheet

Chemical: Sodium Sesquicarbonate NFPA: H=1 F=0 I=0 S= None

HMIS: H=1 F=0 R=0 PPE= Supplied by user;

dependent on conditions

MSDS Number:

Trona-1103

Effective Date:

11 November 2003

Issued by:

Solvay Chemicals, Inc. Regulatory Affairs Department

Not valid three years after effective date or after issuance of superseding MSDS, whichever is earlier. French or Spanish translations of this MSDS may be available. Check www.solvaychemicals.us or call Solvay Chemicals, Inc. to verify the latest version or translation availability.

Material Safety Data Sheets contain country specific regulatory information; therefore, the MSDS's provided are for use only by customers of Solvay Chemicals, Inc. in North America. If you are located in a country other than Canada , Mexico, or the United States, please contact the Solvay Group company in your country for MSDS information applicable to your location.

1. Company and Product Identification

1.1 Product Name:

T-200®

Chemical Name:

Sodium sesquicarbonate

Synonyms:

Mechanically refined trona.

Chemical Formula:

Na₂CO₃ NaHCO₃ 2H₂O

Molecular Weight:

226

CAS Number:

533-96-0

EINECS Number:

208-580-9

Grades/Trade Names: T-200®

1.2 Recommended Uses: Consult supplier

1.3 Supplier:

Solvay Chemicals, Inc.

PO BOX 27328 Houston, TX 77227-7328

3333 Richmond Ave. Houston, Texas 77098

1.4 Emergency Telephone Numbers

Emergencies (USA): 1-800-424-9300 (CHEMTREC®)

Transportation Emergencies (INTERNATIONAL/MARITIME): 1-703-527-3887 (CHEMTREC®)

Transportation Emergencies (CANADA): 1-613-996-6666 (CANUTEC)

Transportation Emergencies (MEXICO-SETIQ): 01-800-00-214-00 (MEX. REPUBLIC)

525-559-1588 (Mexico City and

metro area))

Material Safety Data Sheet

2. Composition/Information on Ingredients

INGREDIENTS Sodium	FORMULA Na₂CO₃·NaHCO₃·2H₂O	WT. PERCENT 98	CAS # 533-96-0	EINECS # 208-580-9
sesquicarbonate Silica, crystalline quartz	SiO ₂	<0.4	14808-60-7	238-878-4
H₂0 insolubles	Not Applicable	2	Not Applicable	Not Applicable

3. Hazards Identification

Emergency Overview: Product reacts with acids to produce carbon dioxide and heat.

- 3.1 Route of Entry: Inhalation: Yes Skin: Yes Ingestion: Yes
- **3.2** Potential Effects of exposure: Sodium Sesquicarbonate is an alkaline product and may irritate digestive mucous membranes, eyes and healthy skin.

Inhalation: May be irritating to the nose, throat, and respiratory tract. Repeated exposure may cause nosebleeds.

Eyes: May cause irritation, severe watering and redness.

Skin contact: May cause skin irritation, seen as redness and swelling. In the presence of moisture or sweat, irritation may become more severe leading to rash.

Ingestion: May cause gastrointestinal irritation including nausea, vomiting, abdominal cramps and diarrhea. May cause irritation of the mouth and throat.

Carcinogenicity: See section 11.3

4. First-Aid Measures

General Recommendations: Treat for eye, skin and respiratory tract irritation.

4.1 Inhalation: Remove subject to a dust free environment and blow nose. If breathing is difficult or has stopped, administer artificial respiration. If any irritation is present, seek medical attention.

Eyes: In cases of splashing of concentrated solution in the eyes and face, treat the eyes first, and then continue first aid as defined under "contact with the skin." Rinse the eyes with running water for 15 minutes, maintaining the eyelids wide open to eliminate the product. Protect the eyes from strong light. Consult a physician or ophthalmologist in all cases.

Skin:

- Remove contaminated shoes, socks and clothing, under a shower if necessary; wash the affected skin with luke warm water.
- Keep warm (blanket), provide clean clothes.
- Consult with a physician in all cases.
- Dry carefully.
- In case of persistant pain or reddening, consult physician.

Ingestion: Do not induce vomiting. Remove any evidence of the product from the person's mouth.

Material Safety Data Sheet

If the subject is completely conscious: Give 8-12 ounces of water, SEEK MEDICAL ATTENTION.

If the subject is unconscious:

NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSIOUS PERSON.

5. Fire-Fighting Measures

- 5.1 Flash point: Non combustible.
- 5.2 Auto-ignition Temperature: Not Applicable.
- **5.3 Flammability Limits:** Not Applicable.
- 5.4 Unusual Fire and Explosion Hazards: Non-combustible and non-explosive.
- **5.5** Common Extinguishing Methods: In case of fire near stored product, all means of extinguishing are acceptable.

6. Accidental Release Measures

- 6.1 Precautions: Avoid excessive dust.
- **Cleanup methods:** Clean up uncontaminated material and recycle into process. Place unusable material into a closed, labeled container compatible with the product.
- **6.3** Precautions for protection of the environment: Sweep up residual material. Do not flush to drain. Prevent material from entering public sewer systems or any waterways. Dispose of waste in accordance with applicable federal, state, and local environmental laws and regulations.

7. Handling and Storage

7.1 Handling:

- Avoid prolonged or repeated contact with the skin or eyes.
- Do not wear contact lenses without proper eye protection when using this product.
- · Avoid prolonged or repeated breathing of dusts.
- · Use vacuum or wet mop to clean up dust.
- **7.2 Storage:** Keep in a closed, properly labeled container in a dry area away from acids. Protect from physical damage.
- 7.3 Specific Uses: See Section 1.2

7.4 Packaging:

- · Bulk rail car and truck
- Paper+PE
- Woven plastic material + PE coating
- Woven plastic material + PE.

Material Safety Data Sheet

8. Exposure Controls/Personal Protection

8.1 Exposure Limit Values

TLV® ACGIH®-USA (2002)

OSHA PEL

Sodium Sesquicarbonate

Nuisance Dust-5 mg/m³ (Respirable Fraction), 15 mg/m³ (Total Dust).

Silica, Crystalline Quartz

0.05 mg/m³ for 8 hourTWA

10 mg/m³ / % Silica + 2

ACGIH® and TLV® are registered trademarks of the American Conference of Governmental Industrial Hygienists.

- 8.2 Exposure Controls:
- 8.2.1 Occupational Exposure Controls:
- **8.2.1.1 Ventilation:** In places with the possibility for creating excessive dust in excess of exposure limits, ventilation should be provided.
- **8.2.1.2 Respiratory protection:** In case of significant or accidental dust emissions, a NIOSH/MSHA approved dust respirator should be worn.
- 8.2.1.3 Hand protection: Cotton gloves are adequate for routine handling of dry product.
- 8.2.1.4 Eye protection: In cases of significant dust, dust proof goggles are recommended.
- **8.3** Other precautions: Protective clothing in dusty areas. An eyewash and safety shower should be nearby and ready for use. Use good hygiene practices when handling this product including changing work clothes after use. Do not eat, drink or smoke in areas where this material is handled.

9. Physical and Chemical Properties

9.1 Appearance: Powder

Color: White to off white

Odor: Odorless

9.2 Important Health, Safety and Environmental information:

pH: 10.1 (1-% solution).

Change of state:

Melting point: Decomposes at >70°C (158°F).

Boiling point: Not applicable.

Decompositon Temperature: Beginning at 70°C (158°F).

Flash Point: Not Applicable Flammability: Not Applicable

(solid, gas)

Explosive Properties: Not Applicable

Material Safety Data Sheet

Oxidizing Properties: Not Applicable Vapor Pressure: Not Applicable

Relative Density: Specific gravity (H₂O=1): 2.11

Solubility:

Water: 20% maximum by weight in water @ 30°C (86°F).

Fat: Not Applicable.

Partition coefficient: P (n-octanol/water): Not applicable.

Viscosity: Not listed

Vapor Density (air=1): Not Applicable.

Evaporation Rate: Not Applicable.

9.3 Other Information:

Bulk Density: 49 lbs./ft3 (780 kg/m3)

10. Stability and Reactivity

Stability: Stable at ambient temperature and atmospheric pressure.

10.1 Conditions to avoid:

- · Protect from moisture
- Mixing of acid, oxidizing agents and sodium sesquicarbonate solutions could cause
 CO₂ evolution and may cause severe splattering.
- 10.2 Materials and substances to avoid: Sodium sesquicarbonate mixed with lime dust in the presence of moisture will form caustic soda, which can cause serious burns. When heated, may react with Aluminum (Al). Reacts with acids and releases large volumes of CO₂ gas and heat.
- **10.3** Hazardous decomposition products: Carbon dioxide (CO₂) is evolved when mixed with acids and oxidizing agents.
- 10.4 Hazardous Polymerization: None.
- 10.5 Other information: None.

11. Toxicological Information

11.1 Acute toxicity:

Inhalation: LC₅₀ 2300 mg/m³/2h(sodium carbonate) species: rat.

Oral: LD_{50} 4090 mg/kg (sodium carbonate) species: rat.

Dermal: LD₅₀, rabbit, >2,000 mg/kg (sodium carbonate)

11.2/11.3 Chronic toxicity/ Carcinogenic Designation: This product contains less than 0.4% Silica, crystalline quartz. Silica, crystalline quartz at greater than 1% has been shown to cause silicosis, a progressive lung disease. Silica is a suspected carcinogen.

Material Safety Data Sheet

12. Ecological Information

12.1 Acute ecotoxicity:

SODIUM BICARBONATE: **Crustaceans**, Daphnia magna, LC₅₀, 48 hours, 2350 mg/l. **Fishes**, Gambusia affinis, LC₅₀, 96 hours, 7550 mg/l.

SODIUM CARBONATE: **Crustaceans**, Daphnia sp., LC_{50} , 48 hours, from 115 to 150 mg/l. **Fishes**, various species, LC_{50} , 96 hours, from 30 to 1,200 mg/l.

- 12.2 Chronic ecotoxicity: None listed.
- 12.3 Mobility: Water-Considerable solubility and motility.

12.4 Degradation

Abiotic:

- Water, hydrolysis. Degradations products: Carbonate (pH.10/bicarbonate (pH 6-10)/carbonic acid/carbon dioxide (pH<6)
- Soil-Result: Hydrolysis as a function of pH.

Biotic: Not Applicable.

- 12.5 Potential for bioaccumulation: Not Applicable.
- **12.6 Other adverse effects /Comments:** Observed effects are related to alkaline properties of product. Product is not significantly hazardous for the environment.

13. Disposal Considerations

- **13.1 Waste treatment:** T-200 is not a listed hazardous waste under 40 CFR 261. However, state and local regulations for waste disposal may be more restrictive. Spilled product should be disposed of in an EPA approved disposal facility in accordance with applicable national, state and local environmental laws and regulations.
- **13.2 Packaging treatment:** To avoid treatments, use dedicated containers where possible. Rinse the empty containers and treat the effluent in the same way as waste. Consult current federal, state and local regulations regarding the proper disposal of emptied containers.
- 13.3 RCRA Hazardous Waste: Not Listed.

14. Transport Information

Mode	DOT	IMDG	IATA
UN Number	Not a regulated	Not a regulated	Not a regulated
	hazardous material	hazardous material	hazardous material
Other	It is recommended that E	RG guide # 111 be used for all no	n DOT regulated material.
STCC #:	28-123-87		

Material Safety Data Sheet

15. Regulatory Information

National Regulations (US)

TSCA Inventory 8(b): Yes

SARA Title III Sec. 302/303 Extremely Hazardous Substances (40 CFR355): No

SARA Title III Sec. 311/312 (40 CFR 370:

Hazard Category:

Acute and Chronic health hazard

Threshold planning quantity - 10,000 lbs

SARA Title III Sec. 313 Toxic Chemical Emissions Reporting (40 CFR 372): No

CERCLA Hazardous Substance (40CFR Part 302)

Listed: No

Unlisted Substance: No

State Component Listing: None identified

National Regulations (Canada)

Canadian DSL Registration: Yes

WHMIS Classification: Not Applicable

This product has been classified in accordance with the hazard criteria of the *Controlled Products Regulations* and the MSDS contains all the information required by the *Controlled Products Regulations*.

Labeling according to Directive 1999/45/EC.

Name of dangerous products-sodium sesquicarbonate

Symbols Xi Irritant

Phrases R 36 Irritating to eyes

16. Other Information

16.1 Ratings:

NFPA (NATIONAL FIRE PROTECTION ASSOCIATION)

Health = 1 Fire = 0 Instability = 0 Special = none

HMIS (HAZARDOUS MATERIAL INFORMATION SYSTEM)

Health = 1 Fire = 0 Reactivity = 0 PPE = Supplied by User; dependent on local conditions

16.2 Other Information:

The previous information is based upon our current knowledge and experience of our product and is not exhaustive. It applies to the product as defined by the specifications. In case of combinations or mixtures, one must confirm that no new hazards are likely to exist. In any case, the user is not exempt from observing all legal, administrative and regulatory procedures relating to the product, personal hygiene, and integrity of the work environment. (Unless noted to the contrary, the technical information applies only to pure product).

Material Safety Data Sheet

To our actual knowledge, the information contained herein is accurate as of the date of this document. However, neither Solvay Chemicals, Inc. nor any of its affiliates makes any warranty, express or implied, or accepts any liability in connection with this information or its use. This information is for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right. The user alone must finally determine suitability of any information or material for any contemplated use, the manner of use and whether any patents are infringed. This information gives typical properties only and is not to be used for specification purposes.

TRADEMARKS: All trade names products referenced herein are either trademarks or registered trademarks of Solvay Chemicals, Inc. or affiliate unless otherwise indicated.

16.3 Reason for revision:

Supersedes edition: Solvay Minerals MSDS #015 dated 4/9/03. Purpose of revision: Change Company name and MSDS format.

APPENDIX D

PROOF OF GOOD STANDING

MEW HAMPSHIRE

Corporation Division

Search
By Business Name
By Business ID
By Registered Agent
Annual Report
File Online
Guidelines
Name Availability
Name Appeal Process

Date: 2/12/2014

Filed Documents

(Annual Report History, View Images, etc.)

For a blank Annual Registration Report, click here.

Business Name History

Name

Name Type

PUBLIC SERVICE COMPANY OF NEW

HAMPSHIRE

Legal

Corporation - Domestic - Information

Business ID:

18692

Status:

Good Standing

Entity Creation Date:

8/16/1926

Principal Office Address:

780 N Commercial Street Manchester NH 03101

Marichester Mi 103

Principal Mailing Address:

Kay Comendul Northeast Utilities Service Company

PO Box 270 Hartford CT 06141

Last Annual Report Filed Date:

3/14/2013

Last Annual Report Filed:

2013

Registered Agent

Agent Name:

C T Corporation System

Office Address:

9 Capitol Street Concord NH 03301

Mailing Address:

File Annual Report Online.

Important Note: The status reflected for each entity on this website only refers to the status of the entity's filing requirements with this office. It does not necessarily reflect the disciplinary status of the entity with any state agency. Requests for disciplinary information should be directed to agencies with licensing or other regulatory authority over the entity.